Bioactive endophytes warrant intensified exploration and conservation

TitleBioactive endophytes warrant intensified exploration and conservation
Publication TypeJournal Article
Year of Publication2008
AuthorsSmith SA, Tank DC, Boulanger L-A, Bascom-Slack CA, Eisenman K, Kingery D, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJin, Puyao L, Light DY, Lin EH, Ma C, Moore E, Schorn MA, Vekhter D, Nunez PV, Strobel GA, Donoghue MJ, Strobel SA
JournalPLoS ONE
Pagination1 - 4
KeywordsBIOINFORMATICS, BIOLOGICAL assay, ENDOPHYTES, ENDOPHYTIC fungi, PERU, PLANT diversity, PLANT diversity conservation, PLANTS – Phylogeny, TROPICAL plants

Background: A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. Methodology/Principal Findings: We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bi