Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest

TitlePhylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest
Publication TypeJournal Article
Year of Publication2006
AuthorsWebb CO, Gilbert GS, Donoghue MJ
Date Published2006 Jul
KeywordsBIODIVERSITY, Biological Evolution, Borneo, Ecosystem, Environment, GEOGRAPHY, Logistic Models, phylogeny, Plant Development, Plant Diseases, Plants, Seedling, Trees

Density-dependent models that partition neighbors into conspecifics and heterospecifics ignore the great variation in effect of heterospecifics on focal plants. Both evolutionary theory and empirical results suggest that the negative effect of other plants on a focal plant should be higher for closely related neighbors than for less related neighbors. Using community-wide seedling mortality data from a forest where density dependence has previously been found, we searched for significant phylogenetic neighborhood effects (the “phylodiversity” neighborhood) on seedling (<50 cm tall) survival at various spatial scales. Logistic regression models were used, with 19-mo survival of individual seedlings as the response. We found a significant positive effect of nearest taxon phylodiversity on seedling survival at the 36-m2 scale and the 4-m2 scale, indicating that seedling survival is enhanced by being in a neighborhood where heterospecifics are not closely related. At all scales there was a strong negative effect of conspecific seedling density on focal survival, and at small scales there was also an effect of heterospecific density, indicating generalized competition. We place these results (for seedling dynamics over a relatively short period of time) in the context of changes in phylodiversity between different size classes of plants in the same forest, which integrate the effects of dynamics of all size classes over long time periods. At the 36-m2 scale, there was an increase in nearest taxon phylodiversity (i.e., a decrease in phylogenetic clustering) from the seedlings (<50 cm tall) to the poles (1-5 cm diameter), consistent with the positive effect of local phylodiversity on seedling survival. In contrast, there was a marked decrease in average phylodiversity from seedlings to saplings at the same scale. The trees in the 1600 m2 surrounding the seedling plots had much lower phylodiversity than either the seedlings or saplings. Taken together, these results suggest that (1) over short time and spatial scales, local seedling phylodiversity has a positive effect on seedling survival, possibly via interaction with pathogens (which we discuss in detail), but (2) over longer time periods and larger spatial scales the effect of abiotic-related mortality results in habitat filtering for phylogenetically conserved traits.

File attach: