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ABSTRACT

Aim To reconstruct the temporal and biogeographical history of Old World

disjunctions in Scabiosa (Dipsacaceae) and the timing of diversification in the

Mediterranean Basin, in order to evaluate the importance of biogeographical and

climatological history (particularly the onset of a mediterranean climate) in

shaping Scabiosa distributions.

Location Europe and the Mediterranean Basin, southern Africa and eastern Asia.

Methods This study uses maximum-likelihood and Bayesian phylogenetic

analyses of chloroplast DNA (atpB–rbcL, trnL–trnF, trnS–trnG, psbA–trnH) and

nuclear ribosomal DNA [internal transcribed spacer (ITS) and external

transcribed spacer (ETS)] from 24 out of c. 37 ingroup taxa, beast molecular

dating, and the dispersal–extinction–cladogenesis method (Lagrange) to

reconstruct ancestral geographical ranges and the timing of diversification of

the major clades of Scabiosa.

Results Biogeographical and divergence time reconstructions showed that

Scabiosa originated during the Miocene and diversified in Europe, followed by

independent movements into Asia and Africa. Several of the major clades were

inferred to have radiated sometime between the late Miocene and early

Pleistocene, a timeframe that encompasses the onset of the mediterranean

climate in Europe. More recent middle–late Pleistocene radiations in the

Mediterranean Basin and southern Africa have played a large role in Scabiosa

diversification.

Main conclusions Members of Scabiosa appear to have capitalized on adap-

tations to montane and/or dry conditions in order to colonize similar habitats in

different biogeographical regions. The formation of the East African Rift

mountains is potentially of great importance in explaining the southward

migration of Scabiosa. The initial diversification of Scabiosa in Europe during the

Miocene is not consistent with the initiation of the mediterranean climate, but

may instead be associated with increased aridity and the retreat of subtropical

lineages during this time. However, the radiation of some of the major subclades

within Scabiosa may have been associated with an emerging mediterranean

climate. More recent and rapid radiations in both the Mediterranean Basin and

southern Africa highlight the probable importance of Pleistocene climate

fluctuations in Scabiosa diversification.
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INTRODUCTION

A remarkable characteristic of angiosperm biogeography is the

intercontinental disjunct distributions of closely related species

(Thorne, 1972; Raven & Axelrod, 1974). An understanding of

the origin and evolution of these patterns provides insight into

the assembly of floras and the biogeographical processes

behind current distributions of plant diversity. Some disjunct

patterns are more common than others (Thorne, 1972),

highlighting the potential importance of particular climato-

logical and geological events in shaping patterns of biodiver-

sity. In the Old World, a Europe–eastern Asia disjunction

pattern is thought to have resulted from vicariance of a once

widespread Cenozoic flora (e.g. Thorne, 1972; Wood, 1972;

Tiffney, 1985a,b; Wen, 1999; Milne & Abbott, 2002) as a result

of Pliocene climatic cooling and aridification followed by

Quarternary glaciations (Webb & Bartlein, 1992; Willis et al.,

1999). In addition, disjunct distributions between southern

Africa and Eurasia are found in a number of groups

(Goldblatt, 1978), with dispersal from south to north the

most common explanation (Caujapé-Castells et al., 2001;

Goldblatt et al., 2002; Coleman et al., 2003; Calviño et al.,

2006; Galley et al., 2007; del Hoyo et al., 2009; Sanmartı́n

et al., 2010; Désamoré et al., 2011; but see McGuire & Kron,

2005). Migration may have been via the East African Rift

mountains after their formation in the Pliocene and/or the

result of long-distance dispersal (e.g. Levyns, 1964; Coleman

et al., 2003; Galley et al., 2007). An alternative explanation of

the African–Eurasian disjunctions is that they were caused by

the fragmentation of a once widespread Cenozoic flora

(Quézel, 1978; Andrus et al., 2004).

Scabiosa L. (Dipsacaceae) is characterized by a triple Old

World disjunction (Asia – Europe – southern Africa) and is an

ideal group with which to investigate the competing hypoth-

eses regarding the timing and origin of the disjunctions

outlined above. Members of Scabiosa occur in Europe,

primarily in the Mediterranean Basin (five species and two

species complexes that include c. 14 taxa; Jasiewicz, 1976), Asia

(c. 12 species), and eastern and southern Africa (c. 8 species).

The distribution of Scabiosa, and Dipsacaceae in general, is

somewhat unusual in that, unlike related clades in the

Dipsacales, it apparently never made it to the New World

except as introduced weeds. Moreover, Scabiosa is the only

lineage in Dipsacaceae with significant radiations in Europe,

Asia and southern Africa. Scabiosa contains c. 23 species and

two taxonomically difficult species complexes: S. columbaria

s.l. containing c. nine taxa, and S. ochroleuca s.l. containing

c. five taxa (Jasiewicz, 1976). However, the number of reported

taxa in these complexes varies and is often much higher

(Verlaque, 1986). Scabiosa species typically have narrow
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Figure 1 Distribution map of Scabiosa adapted from Verlaque (1986). Species included in this study are in bold.
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distributions, with the remarkable exception of the widespread

S. ochroleuca L. s.s and S. columbaria L. s.s., which cover an

immense region encompassing most of the range of Scabiosa

(Fig. 1). In all three regions, most taxa occur in montane or

steppe habitats, with several European species occurring in dry,

rocky soils in the Mediterranean Basin.

Scabiosa contains mostly bisexual, out-crossing, insect-

pollinated diploid perennials, with the exception of two

annual species that occur in lowland regions of the Mediter-

ranean (S. tenuis Spruner and S. parviflora Desf.). Like other

Dipsacaceae, members of Scabiosa have capitate inflorescences

and an epicalyx – a novel organ that subtends the calyx and

functions in seed germination, protection and dispersal

(Ehrendorfer, 1965a,b; Verlaque, 1984; Mayer, 1995; Don-

oghue et al., 2003; Caputo et al., 2004). The epicalyx and calyx

together form the dispersal unit, and members of Scabiosa are

thought to be adapted for both wind dispersal and dispersal by

epizoochory (adhesive animal dispersal; Ehrendorfer, 1965a;

Caputo et al., 2004), the latter of which might permit long-

distance dispersal (Fischer et al., 1996; Venable et al., 2008).

The monophyly of Scabiosa is well established, and previous

phylogenetic analyses of Dipsacaceae have confidently resolved

it as sister to Sixalix Raf. within the Scabioseae (Fig. 2; Caputo

et al., 2004; Avino et al., 2009; Carlson et al., 2009). Previous

studies of Dipsacaceae phylogeny have included relatively few

members of Scabiosa, and therefore phylogenetic relationships

within Scabiosa have remained unclear.

Most European Scabiosa taxa occur in the Mediterranean

Basin, a ‘hotspot’ of plant diversity (Myers, 1990; Cowling

et al., 1996; Médail & Quézel, 1997). The remarkable

diversity in this region has frequently been linked to

increased diversification associated with the evolution of
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summer drought during the Pliocene, which led to a seasonal

mediterranean climate (Suc, 1984); however, studies of Med-

iterranean clades that incorporate molecular dating have shown

varied results. Diversification in different Mediterranean

groups is inferred to have occurred before, during and after

the initiation of a mediterranean climate (e.g. Fritsch, 1996;

Hileman et al., 2001; Yesson & Culham, 2006; Guzmán et al.,

2009; Yesson et al., 2009; Valente et al., 2010), with several

groups reported to have experienced multiple bouts of

diversification at different times throughout the Neogene

(e.g. Coleman et al., 2003; del Hoyo et al., 2009; Lo Presti &

Oberprieler, 2009; Roquet et al., 2009; Salvo et al., 2010). These

results highlight the need for a more nuanced explanation for

the evolution of this flora that reflects the biogeographical and

climatic history of the region.

The goal of this study is to assess the origin(s) and timing of

the intercontinental disjunctions in Scabiosa. We also aim to

investigate the initiation of diversification in Asia, Africa and

Europe, particularly as it relates to the onset of a mediterranean

climate in Europe during the Pliocene. We based phylogenetic

analyses on DNA sequences from six gene regions: the

chloroplast markers atpB–rbcL, trnL–trnF, trnS–trnG, psbA–

trnH, and the nuclear ribosomal internal transcribed spacer

(ITS) and external transcribed spacer (ETS). Temporal evolu-

tion in Scabiosa was estimated using a Bayesian divergence time

analysis (beast), using fossil calibrations reported in the

literature. Lastly, biogeographical patterns were investigated

using a maximum-likelihood-based dispersal–extinction–clad-

ogenesis model for geographical range evolution (Lagrange).

MATERIALS AND METHODS

Sampling and sequences

Scabiosa consists of c. 23 species and two species complexes

with uncertain taxonomic boundaries: S. columbaria s.l.

containing c. nine taxa and S. ochroleuca s.l. containing c. five

taxa (Jasiewicz, 1976). For this study, 24 taxa were sampled,

including seven members of S. columbaria s.l. and three

members of S. ochroleuca s.l., and all major biogeographical

regions were represented. For rooting purposes, five species

within Dipsacaceae [Bassecoia hookeri V. Mayer & Ehrendorfer,

Knautia arvensis (L.) Coult., Lomelosia cretica (L.) Greuter &

Burdet, Pterocephalus strictus Boiss. & Hohen. and Sixalix

atropurpurea (L.) Greuter & Burdet] were included based on

previous phylogenetic studies (Avino et al., 2009; Carlson

et al., 2009). For divergence time estimation, six additional

outgroups were sampled from relatives in the Valeriana clade

of the Dipsacales (Donoghue et al., 2001): Triplostegia glan-

dulifera Wall ex DC, Valeriana officinalis L., Centranthus rubber

(L.) DC, Nardostachys jatamansi DC, Patrinia triloba Miq. and

Morina longifolia Wall. This allowed us to include key fossil

calibration points (see below).

Sequence data were collected from herbarium specimens,

silica-preserved field collections and GenBank (see Appen-

dix S1 in Supporting Information). Total genomic DNA was

extracted using a Qiagen DNeasy tissue kit (Qiagen, Valencia,

CA, USA), or a modified version using beta-Mercaptoethanol

and proteinase-K for herbarium specimens (Wurdack et al.,

2004). Six gene regions were amplified and sequenced using

standard primers [trnL–trnF region (Taberlet et al., 1991);

atpB–rbcL region reverse primer (Manen et al., 1994) and

forward primer (Carlson et al., 2009); trnSUGA–trnGGCG (Shaw

et al., 2005); psbA–trnH (Sang et al., 1997); ITS (White et al.,

1990); ETS (Baldwin & Markos, 1998; Markos & Baldwin,

2001)]. Standard polymerase chain reaction (PCR) protocols

were used to amplify these regions, and the PCR products were

cleaned using polyethylene glycol (PEG) precipitation (Kusak-

awa et al., 1990). Sequences were generated using dye termi-

nator cycle sequencing with ABI PRISM BigDye Primer Cycle

Sequencing Ready Reaction kits (Applied Biosystems, Foster

City, CA, USA), and visualized using an ABI 3730 DNA

Analyzer (Applied Biosystems).

Phylogenetic analysis

Contiguous sequences were assembled using Sequencher 4.7

(Gene Codes Corp., Ann Arbor, MI), and aligned datasets

were generated using Muscle 3.8 (Edgar, 2004) and adjusted

manually in MacClade 4.06 (Maddison & Maddison, 2000).

The aligned matrix is available in TreeBase (http://purl.org/

phylo/treebase/phylows/study/TB2:S11839) and upon request

from the first author. Models of molecular evolution were

evaluated for each marker using Akaike’s information crite-

rion (AIC) scores in Modeltest 3.7 (Posada & Crandall,

1998) and used to inform a mixed-model partitioned

phylogenetic analysis. Bayesian inference (BI) analyses were

executed on a concatenated sequence alignment of six

molecular markers, with the chloroplast (cpDNA) and

nuclear ribosomal (nrDNA) datasets organized into two

partitions, and the mutation rate, gamma and state frequen-

cies allowed to vary between the two partitions. BI analyses

were performed using MrBayes 3.1.2 (Ronquist & Huelsen-

beck, 2003), and two simultaneous runs were initiated

starting from random trees. Posterior probabilities of trees

were approximated using the Metropolis-coupled Markov

chain Monte Carlo (MCMC) algorithm with four incremen-

tally heated chains [Temperature (T) = 0.2] for 20 million

generations, and trees were sampled every 2000 generations.

Convergence and sampling intensity were evaluated using the

potential scale reduction factor (PRSF) and estimated sample

size (ESS). To estimate burn-ins, posterior parameter distri-

butions were viewed using Tracer 1.4 (Rambaut & Drum-

mond, 2007). Maximum-likelihood (ML) analyses were

conducted using RAxML 7.0.3 (Stamatakis et al., 2008). Tree

searches were executed starting from a random stepwise-

addition maximum-parsimony (MP) tree and employed the

GTRGAMMA (general time-reversible with rate heterogeneity

accommodated by a gamma distribution) nucleotide substi-

tution model. RAxML estimated all free model parameters,

with GAMMA model parameters estimated up to an accuracy

of 0.1 log-likelihood units. Nonparametric bootstrapping
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under ML was also carried out with RAxML, using 1000

bootstrap replicates. All RAxML analyses were undertaken

using the Cyberinfrastructure for Phylogenetic Research

(CIPRES) portal (http://www.phylo.org/portal2).

Divergence time estimation

Two fossil calibrations were used within the closely related clade

Valerianaceae (Donoghue et al., 2001). To accommodate

palaeontological uncertainty, relatively broad constraints on

fossil age were chosen. Fossil fruits assigned to stem group

Patrinia have been documented from the Miocene to Pliocene

of Poland and Russia (Lańcucka-Środoniowa, 1967), as well as

from the Miocene of Japan (Ozaki, 1980). In a previous study of

divergence times in Dipsacales (Bell & Donoghue, 2005), an age

of c. 45–60 million years (Myr) was estimated for crown group

Valerianaceae. Accordingly, the crown group of Valerianaceae

was constrained to a lognormal distribution with an upper

bound of 60 million years ago (Ma) and a lower bound of 45 Ma

(see also Moore & Donoghue, 2007). Valeriana is known on the

basis of fossil fruits from the Miocene and Pliocene of Europe

(Bell & Donoghue, 2005), and the crown group was constrained

to a lognormal distribution with an upper bound of 25 Ma and

a lower bound of 15 Ma (Moore & Donoghue, 2007).

To estimate divergence times, the Bayesian divergence time

method implemented in beast 1.5.4 (Drummond & Rambaut,

2007) was employed. This method allows uncertainty in

divergence time estimates resulting from topological and fossil

uncertainty. The uncorrelated lognormal (UCLN; Drummond

et al., 2006) model of rate evolution was chosen, which does

not require rates to be heritable and, therefore, allows lineage-

specific rate heterogeneity. The beast analyses were conducted

specifying prior distributions for the fossil nodes discussed

above, and the data were partitioned into cpDNA and nrDNA.

Two beast analyses were run for 50 million generations,

sampling every 5000. Convergence to the same posterior

distributions of divergence times and parameter estimates were

examined in Tracer, and the burn-in was also determined

based on the traces. A maximum-credibility tree, representing

the maximum a posteriori topology, was calculated after

removing burn-ins with TreeAnnotator 1.5.4.

Biogeographical reconstructions

Three biogeographical regions (Fig. 1) were used in the analysis:

(1) Europe (including the Mediterranean Basin), (2) Africa

(south of the Sahara) and (3) eastern Asia. Each Scabiosa species

was assigned to one or more of these areas based on descriptions

of species distributions in the literature (Verlaque, 1986). The

biogeographical history of Scabiosa was inferred using a ML-

based method, Lagrange 2.0.1 (Ree et al., 2005; Ree & Smith,

2008), using the maximum clade credibility tree inferred from

beast. This approach allows for the modelling of geographical

areas to estimate the relative probabilities of ancestral lineages

according to the phylogeny, and estimates dispersal and

extinction parameters as part of the dispersal–extinction–

cladogenesis (DEC) model (Ree & Smith, 2008). Two DEC

models (A and B) were used that differed in dispersal

probabilities between different biogeographical regions. In

model A, dispersal probabilities were equal between all biogeo-

graphical areas, with no constraints between regions. In model

B, dispersal parameters were allowed to vary, reflecting changes

in dispersal opportunities through time, beginning from the age

of the root node from the beast analysis (the details of model B

are described in Appendix S2). All possible area combinations

with a maximum of three simultaneous areas were permitted,

and dispersal between areas was permitted bidirectionally.

RESULTS

Phylogenetic analysis

Bayesian and ML analyses of the combined cpDNA and

nrDNA sequences were performed with 24 accessions of

Scabiosa and five outgroups from the major clades of

Dipsacaceae. The fully aligned data matrix was 4081 bp in

length, of which 3003 bp was cpDNA and 1077 bp was

nrDNA. The topologies of the trees generated for the cpDNA

and nrDNA partitions were generally congruent, although

support values were relatively low (data not shown). Com-

bining the cpDNA and nrDNA datasets resulted in a well-

supported hypothesis of Scabiosa phylogeny (Fig. 2). Scabiosa

was recovered as monophyletic, with Sixalix resolved as its

sister group, as in previous phylogenetic studies (Caputo et al.,

2004; Avino et al., 2009; Carlson et al., 2009). The phyloge-

netic analyses resolved two major clades in Scabiosa: clade 1

and clade 2. Clade 1 consisted of members of Asian section

Prismakena (Bobrov, 1957) and a European clade of S. vestina

Facchini, sister to S. silenifolia Waldst. & Kit. + S. canescens

Waldst. & Kit. Support for the monophyly of section

Prismakena was low (< 0.80 BI posterior probability support,

< 70% ML bootstrap support), although S. comosa Fisch.

ex Roem. & Schult. and S. mansenensis Nakai formed a

well-supported clade. Clade 2 consisted of the annual species

S. tenuis Spruner, sister to a large clade (‘clade 2, core group’)

containing members of S. columbaria s.l., S. ochroleuca s.l. and

a clade of all sampled African species. Scabiosa ochroleuca s.l.

was supported as monophyletic in the BI analysis, with the

Balkan endemics S. triniifolia Friv. and S. webbiana D. Don

resolved as sister taxa. Relationships within the large S. colum-

baria species complex were not resolved with the six markers

used. Phylogenetic structure was discernable within the African

group, with S. angustiloba (Sond.) Burtt ex Hutch., S. beukiana

Eckl. & Zeyh. and S. tysonii L. Bolus forming a clade that

was sister to S. africana L. and S. transvaalensis S. Moore +

S. drakenbergensis Burtt (although support for this clade was

low in the ML analysis; ML bootstrap = 66%).

Divergence time and biogeographical analyses

The phylogeny calculated from the Bayesian divergence time

analysis resulted in the same topology as that estimated by the

S. E. Carlson et al.

1090 Journal of Biogeography 39, 1086–1100
ª 2012 Blackwell Publishing Ltd



BI and ML analyses, with higher support (> 0.80 BI posterior

probability) for the Prismakena clade and for the clade

containing the S. columbaria and S. ochroleuca species

complexes (> 0.95 BI posterior probability; Fig. 3). ML

reconstructions of geographical ranges for the major nodes

of Scabiosa are presented in Fig. 4. Analyses using model A and

model B yielded similar results with similar log-likelihood

scores (model A: lnL = )36.98; model B: lnL = )36.03).

Biogeographical and molecular dating analyses inferred that

Scabiosa diverged from its sister group, Sixalix, in Europe

sometime in the Miocene between 6.7 and 15.9 Ma. The split

between the two main lineages – clade 1 and clade 2 – occurred

between 5.3 and 12.7 Ma. Movement to Asia was recon-

structed in the lineage leading to clade 1, with the split between

the Asian and European clades estimated to have occurred

sometime between the late Miocene and early Pleistocene (2.3–

6.6 Ma), followed by diversification of both clades during the

Pliocene/Pleistocene (Asian clade: 1.5–5.2 Ma; European clade:

1.1–4.6 Ma). In clade 2, the core group originated sometime

between the late Miocene and early Pleistocene (2.0–6.8 Ma),
Fr
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and the split between the African clade and the clade

containing the S. columbaria and S. ochroleuca species com-

plexes occurred sometime in the Pleistocene (0.7–2.6 Ma).

These clades then radiated in Africa and Europe at a similar

time during the Pleistocene (0.4–1.8 Ma for both lineages).

DISCUSSION

Scabiosa phylogeny and character evolution

The phylogenetic results presented here are the most compre-

hensive for Scabiosa to date. Previous studies of Dipsacaceae

included relatively few members of Scabiosa, and placed the

Asian species S. japonica Miq. as sister to European and

African taxa (Avino et al., 2009; Carlson et al., 2009). Our

study shows that there are two major lineages in Scabiosa

(clade 1 and clade 2), with one clade of European species

(containing S. canescens, S. silenifolia, S. vestina) linked with

the Asian species in clade 1 (Prismakena), and the remaining

European species aligned with the African species in clade 2.

Members of clade 1 are generally characterized by pleisiomor-

phic morphological and anatomical features (Verlaque, 1986;

Mayer & Ehrendorfer, 1999). In particular, the epicalyx is

generally less differentiated than in members of clade 2. The

apical part of the epicalyx – the corona – forms a small wing in

Scabiosa, and in clade 1 the corona is less wing-like and tends

to be more irregularly shaped and vertically oriented, with

fewer corona nerves (Verlaque, 1986). Furthermore, members

of Prismakena have a quadrilateral epicalyx that lacks deep

grooves in the epicalyx tube, and all examined members of

Prismakena lacked sclerenchyma – thick cells that are consid-

ered an adaptation to arid conditions (Bobrov, 1957; Mayer,
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1995; Mayer & Ehrendorfer, 1999). In contrast, members of

clade 2 are characterized by an epicalyx with eight prominent

grooves, sclerenchyma and a horizontal and more wing-like

corona. These epicalyx features are probably related to

dispersal and colonization and may have allowed members

of clade 2 to successfully colonize regions such as the

Mediterranean Basin. The sclerified epicalyx in particular

would have given members of clade 2 an advantage in

colonizing regions that experience summer drought (Mayer,

1995). Lastly, the European members of clade 1 are united by

the presence of entire leaves in the rosette, and our study

supports the previously proposed association of S. canescens

and S. vestina based on similar morphology of the cauline

leaves (Jasiewicz, 1976).

The major phylogenetic relationships within clade 2 are

relatively well resolved, although support for the monophyly of

the two species complexes is relatively low in the phylogenetic

analysis (but high in the beast analysis). Scabiosa tenuis is one

of only two annuals in Scabiosa, and it appears as sister to the

remaining perennial species. The African species tend to have

mauve flowers (Verlaque, 1986) and are divided into two

subclades that differ in elevation and geography. Scabiosa

africana is the only species in the African clade that occurs in

the Mediterranean Cape region (S. columbaria s.s. also occurs

in this region) and is sister to S. drakensbergensis and

S. beukiana (but with low ML support), which occur at high

elevations in the Drakensberg range, which forms the eastern

escarpment of the southern African central plateau. Members

of the other African subclade (i.e. S. tysonii, S. beukiana and S.

angustiloba) occur at lower elevations in the Drakensberg

range.

Scabiosa columbaria and S. ochroleuca species complexes

have long posed a difficult taxonomic problem. Hybridization

is common and, as a result, the number of reported species

(and subspecies) has varied widely (e.g. Bobrov, 1957;

Matthews, 1972; Grossman, 1975; Jasiewicz, 1976). A revision

of the species limits in S. columbaria s.l. and S. ochroleuca s.l. is

much needed. In the meantime, our study suggests that several

of the proposed species in these complexes do indeed belong to

the same evolutionary lineages. Like all species in clade 2,

members of the two complexes are morphologically similar,

but differ in corolla colour: reddish purple to lilac blue in S.

columbaria s.l. and white to pale yellow in S. ochroleuca s.l. Our

finding that members of S. ochroleuca s.l. are monophyletic

lends support to this taxonomic interpretation and to the

utility of corolla colour as a synapomorphy for S. ochroleuca s.l.

Origin of Scabiosa and Old World disjunctions

The results presented in this study suggest that Scabiosa

originated sometime in the middle–late Miocene with an

initial area of diversification in Europe, which was followed by

movement into Asia and Africa. A less specific hypothesis

could be that the area of origin cannot be resolved, and is

located somewhere within the current distribution areas

(‘primitive cosmopolitanism’). However, the more detailed

hypothesis of a European area of initial diversification obtains

significantly better support than primitive cosmopolitanism or

an initial area of diversification in either Africa or Asia (Fig. 4),

indicating that this more detailed hypothesis can be preferred

using an events-based ML framework. A Miocene origin for

Scabiosa is consistent with the study of Bell & Donoghue

(2005), which showed the major lineages of Dipsacaceae to

have originated during this time. During the middle Miocene,

global temperatures cooled (Zachos et al., 2001), causing

subtropical and warm-temperate elements to retreat from

Europe, which opened up niches for herbaceous lineages (Pons

et al., 1995). Aridification is also thought to have occurred

during this time, caused by changing sea currents owing to the

closure of the connection between the Mediterranean Sea and

Indian Ocean, which fragmented the Tethys (Krijgsman,

2002). By the late Miocene, palaeo-Mediterranean species

began to develop, as the subtropical elements were lost

(Thompson, 2005). The origin of Scabiosa generally coincides

with this shift away from warm-temperate and subtropical

elements during the Miocene. The initial diversification of

Scabiosa may also have been influenced by the Messinian

salinity crisis at the end of the Miocene (5.96–5.33 Ma), a

geological phenomenon caused by the closing of Mediterra-

nean–Atlantic gateways that resulted in the drying of the

Mediterranean Sea and increased salinity (Krijgsman et al.,

1999; Krijgsman, 2002). This event allowed the formation of

ephemeral corridors that connected land masses throughout

the Mediterranean. The impact of the Messinian salinity crisis

on plant biogeography is thought to have been driven

primarily by differentiation via vicariance (e.g. Sanmartı́n,

2003; Thompson, 2005; Rodrı́guez-Sánchez et al., 2008);

however, adaptation to saline soils may have also promoted

diversification in early diverging Scabiosa lineages (Kruckeberg,

1986; Rajakaruna, 2004).

Like all major groups within the Dipsacales, Dipsacaceae may

have originated in Asia and subsequently moved west (Bell &

Donoghue, 2005; Moore & Donoghue, 2007; Carlson et al.,

2009). Our study suggests that movement back into Asia also

occurred, as evidenced by the inferred movement of Scabiosa

into Asia at least once in clade 1. Most work on plant

disjunctions in the Northern Hemisphere has focused on plants

with an eastern Asia–eastern North America disjunct distribu-

tion (e.g. Wen, 1999; Donoghue & Smith, 2004; Winkworth &

Donoghue, 2005; Smith & Donoghue, 2009), or with a Eurasia–

western North America distribution (i.e. the Madrean–Tethyan

disjunction; e.g. Fritsch, 1996; Hileman et al., 2001; Coleman

et al., 2003; Smith & Donoghue, 2009; Wen & Ickert-Bond,

2009). There has been less work on disjunctions between eastern

Asia and Europe (but see Sun, 2002; Sun & Li, 2003; Wu, 2004),

and, unlike other Dipsacales, Scabiosa evidently never moved to

the New World except as introduced weeds. Northern Hemi-

sphere disjunctions are thought to sometimes have resulted

from an earlier, once widespread Cenozoic relict flora that later

fragmented (Wen, 1999; Tiffney & Manchester, 2001; Milne &

Abbott, 2002). The disjunction between eastern Asia and

Europe was the result of extinction owing to the uplift of the
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Tibetan Plateau, mainly in the Miocene (Harrison et al., 1992;

Axelrod et al., 1998; Sun et al., 2001; Sun, 2002; Zhang et al.,

2006; Qiao et al., 2007). In the case of Scabiosa, we infer the split

between Europe and Asia to be 2.3–6.6 Ma, so we cannot reject

the vicariance hypothesis. However, Pliocene climate fluctua-

tions may be a more likely explanation for this disjunction, as is

consistent with studies on other plant groups exhibiting more

recent disjunctions between Europe and Asia (e.g. Fiz-Palacios

et al., 2010; Tu et al., 2010).

Our dating analysis indicates that there were probably no

significant barriers to dispersal for the ancestor(s) of Asian

Scabiosa species north of the Tibetan Plateau. In the Palaeo-

gene, the Turgai Strait created a barrier from the Arctic Ocean

to the Tethys Seaway and separated the European and Asian

floras until the early Oligocene (Legendre & Hartenberger,

1992), well before the origin of Scabiosa. With the demise of

the Turgai Strait, a dry and more seasonal continental climate

spread through central Asia and is thought to have facilitated

exchange between Asia and Europe (Tiffney & Manchester,

2001). While migration is considered to have occurred

primarily in an east–west direction (Tiffney & Manchester,

2001), our results with Scabiosa provide an example of

movement from west to east. The European and Asian

members of clade 1 tend to occur in steppe or montane

habitats (Bobrov, 1957; Jasiewicz, 1976; Hong et al., 2011),

suggesting that perhaps members of Scabiosa were ‘pre-

adapted’ to survive in similar environments in Asia and made

use of existing corridors (Ackerly, 2004; Donoghue, 2008;

Crisp et al., 2009). The wide distributions of S. columbaria s.s.

and S. ochroleuca s.s., which extend through central Asia

(Fig. 1), demonstrate the feasibility of migration through

Europe and central Asia. The current absence of Scabiosa clade

1 between Western Europe and the Altai may be a result of

extinction during the glacial climates in the regions in the rain

shadows of the Himalaya and Caucasus.

The African Scabiosa radiation is also unique in the context

of Dipsacaceae biogeography, wherein most lineages occur

mostly around the Mediterranean Basin. Plant disjunctions

between the Mediterranean Basin and southern Africa are an

increasingly well-studied phenomenon, and while many of

these disjunctions are associated with xeric conditions in Africa

and south-west Asia, others occur in temperate habitats in

Africa (e.g. Cape and Afromontane regions) and Eurasia

(Hilliard & Burtt, 1971; Linder et al., 1992). Dispersal from a

southern African origin is the most common explanation

(Caujapé-Castells et al., 2001; Goldblatt et al., 2002; Coleman

et al., 2003; Calviño et al., 2006; : Galley et al., 2007; del Hoyo

et al., 2009; Sanmartı́n et al., 2010; Désamoré et al., 2011);

however, our study suggests that dispersal to southern Africa

from Europe occurred in Scabiosa. Although less commonly

documented, other African–European disjunct groups also

show a European origin, such as Erica (McGuire & Kron,

2005) and Dianthus (Valente et al., 2010). Our findings

support a Pliocene/Pleistocene migration into Africa, perhaps

via the East African Rift mountains, which were formed in the

late Miocene–Pliocene (Grove, 1983). The current distribution

of S. columbaria s.s. over the length of east Africa and into

southern Africa (Fig. 1) demonstrates the suitability of this

track as a corridor for Scabiosa.

All members of the African clade are located in the greater

Drakensberg range in eastern South Africa, except for

S. africana, which occurs in the Mediterranean Cape region.

Many southern African groups occur in both the Cape and the

Drakensberg, but, unlike Scabiosa, tend to be more species-

poor in the latter (Hilliard & Burtt, 1987; Linder, 2005). This is

thought to result from, among other factors (see Linder, 2005),

a more stable Pleistocene climate in the Cape, which resulted

in less extinction and allowed the range-restricted species

characteristic of the fynbos to persist (Galley et al., 2009). The

Drakensberg range, on the other hand, is dominated by

grasslands, is not characterized by a winter rainfall regime, and

experienced greater climatic fluctuations during the Last

Glacial Maximum (Harper, 1969). Although the eastern

escarpment of southern Africa dates to the Jurassic fragmen-

tation of Gondwana, the current elevation of these mountains

may be largely a result of Pliocene uplift (Partridge, 1998). This

uplift has been suggested to have triggered diversification of

eastern South African plant lineages (Goldblatt et al., 2002;

Linder et al., 2006). However, our results suggest that Scabiosa

radiated in the Drakensberg range after this occurred. The

asymmetric distribution of Scabiosa species in the Drakensberg

range versus the Cape could result from the relatively young

age of the African clade, which may have migrated first to the

Drakensberg range. The Drakensberg range plays an important

role as a ‘stepping stone’ for plants between the Cape and

Afrotemperate regions further north, and migration from the

Cape is thought to have occurred predominately through the

Drakensberg (Galley et al., 2007; Sanmartı́n et al., 2010).

Because Scabiosa has a European origin, migration may have

occurred in the opposite direction, with Scabiosa arriving first

in the Drakensberg before moving into the Cape in the lineage

leading to S. africana. Like several other Asian and European

Scabiosa species, species in the Drakensberg range occur in

montane habitats, suggesting that this lineage may have filtered

into regions to which it was already well adapted. The two

clades separate into a Drakensberg foothills clade (S. tysonii–

buekiana–angustiloba) and summits clade (S. drakensbergensis–

transvaalensis), and could be radiations out of an original

elevational separation. Such an elevational diversification has

been documented for the orchids in this region as well (Linder,

1980, 1981). The Cape S. africana is related to the high-

elevation clade, consistent with the presence of a Cape element

at high elevation in the Drakensberg (Weimarck, 1941; Carbutt

& Edwards, 2002).

Although we consider it less likely in view of the existence of

suitable migration corridors, consideration also needs to be

given to the possibility of long-distance dispersal by birds as an

explanation for disjunctions in Scabiosa. The stiff calyx bristles

characteristic of Scabiosa diaspores form a pappus that suggests

epizoochory (van der Pijl, 1982). Long-distance bird dispersal

has been invoked to explain disjunctions in other Mediterra-

nean plant clades such as Senecio (Coleman et al., 2003) and
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Hordeum (Blattner, 2006), and is regarded as a more common

occurrence than previously recognized. Moreover, Scabiosa

nitens, a species not included in this study but a presumed

member of the S. columbaria group (Jasiewicz, 1976), occurs

on the Azores – oceanic islands that were never connected to

continental land masses – which indicates that long-distance

dispersal is possible in Scabiosa.

Mediterranean diversification

The remarkable species diversity of Mediterranean regions

makes the factors underlying diversification of particular

interest. The relative importance of the initiation of the

mediterranean climate of hot, dry summers and cool, wet

winters remains unclear. The origin and diversification of

Mediterranean lineages such as Antirrhinum (Vargas et al.,

2009) and Senecio sect. Senecio (Coleman et al., 2003) are dated

to the Pliocene, suggesting a climatic link. However, the origins

of several other lineages pre-date the mediterranean climate,

with diversification spanning the Oligocene, Miocene, Pliocene

and Pleistocene [e.g. Androcymbium (Caujapé-Castells et al.,

2001; del Hoyo et al., 2009); Anthemis (Lo Presti & Oberprieler,

2009); Cyclamen (Yesson et al., 2009); Ruta (Salvo et al.,

2010)]. Similarly, the origin of Scabiosa pre-dates the Pliocene,

but the diversification of major subclades within Scabiosa may

be associated with the Pliocene increase in summer drought.

For example, the divergence time estimates of the crown ages of

clade 1, clade 2 and the European group of clade 1 encompass

the timeframe during which the mediterranean climate was

formed, c. 3 Ma (Suc, 1984). While the confidence intervals

preclude more precise dating of these clades, a correlation

between the mediterranean climate and diversification of some

of the major Scabiosa lineages cannot be ruled out.

The Pleistocene radiation of the clade containing the

S. columbaria and S. ochroleuca complexes has clearly played

a prominent role in the evolution of Scabiosa in Europe. As

with other recent radiations, this clade forms a large polytomy

(except for the S. ochroleuca group), and further analysis using

additional markers is required to discern relationships within

this group. Other European radiations, such as Cistus (Guz-

mán et al., 2009) and Dianthus (Valente et al., 2010), also

diversified primarily in the Mediterranean Basin and are dated

to the Pleistocene, suggesting a prominent role for the climatic

fluctuations that characterized this time in the evolution of the

contemporary Mediterranean flora. Despite climatic instability

during the Pleistocene, numerous refugia that allowed long-

term species persistence existed in the Mediterranean Basin

(Taberlet et al., 1998), where several members of the two

Scabiosa species complexes occur. These refugia probably

provided the source material for the recolonization of previ-

ously glaciated areas by members of Scabiosa in central Europe

(von Hagen et al., 2008).

A further increase in summer drought during the Pleisto-

cene (Mai, 1989; Svenning, 2003; Rodrı́guez-Sánchez &

Arroyo, 2009) may also be associated with the radiation of

the Scabiosa species complexes. Sclerenchyma in the epicalyx

tube, characteristic of all members of clade 2, may have

enabled persistence and adaptation to drought conditions

(Mayer, 1995). In addition, members of the two groups are

differentiated by leaf shape and pubescence traits that are

associated with resistance to drought stress and solar irradiance

(Lambers et al., 1998). For example, taxa that occur in semi-

arid Mediterranean regions (e.g. S. turolensis, S. taygetea) have

leaves that are covered in woolly, dense hairs (i.e. they are

‘lanate’), and species in the dry, stony meadows of the Balkan

peninsula (e.g. S. webbiana, S. triniifolia) have leaves covered in

a soft mat of short, erect hairs. In contrast, species that occur

in more humid, formerly glaciated regions in Central and

Eastern Europe, often in the mountains (e.g. S. lucida), have

glabrous leaves. A similar pattern is reported for Cistus, where

the diverse microclimatic conditions of the Mediterranean

Basin are correlated with the evolution of divergent leaf traits

(Guzmán et al., 2009).

Summary and concluding thoughts

The unusual triple disjunction of Scabiosa in the Old World

provides the opportunity to evaluate the origin and timing of

intercontinental disjunctions involving eastern Asia, Europe

and southern Africa. Separate movements into Asia and, later,

Africa from Europe offer a less commonly documented

example of west–east and north–south migration in the Old

World. The timing of disjunctions in Scabiosa tends not to

support the hypothesis of vicariance of a once widespread

Cenozoic flora (although this cannot be ruled out in the

Europe–Asia disjunction), but rather to point to the impor-

tance of Pliocene/Pleistocene climate fluctuations and/or long-

distance dispersal. Migration corridors such as the East African

Rift mountains may have been of great importance, as many

members of Scabiosa occur in montane habitats and could

have migrated through areas to which they were already well

adapted. The immense ranges of S. columbaria s.s. and

S. ochroleuca s.s. demonstrate the current suitability of

migration through these corridors, and perhaps provide

insight into how the triple disjunction of Scabiosa was achieved

in the past. That is, the current distributions of S. columbaria

s.s. and S. ochroleuca s.s. may represent ‘history repeating

itself’, with the expectation that these widespread ranges will

fragment in the future as populations undergo local adaptation

in different parts of the range.

The initiation of the mediterranean climate has been

invoked to explain the high species diversity associated with

the Mediterranean Basin. The origin of Scabiosa, however, does

not appear to coincide with this event. Rather, the retreat of

subtropical floras in response to increasing aridity in Europe

during the Miocene may have been more important. Never-

theless, it appears that the mediterranean climate may have

played an important role in Scabiosa diversification. Diver-

gence time estimates for several of the major subclades

encompass the Pliocene origin of the mediterranean climate,

and most taxa within the S. columbaria s.l. and S. ochroleuca s.l.

radiation occur in typical Mediterranean habitats. To success-
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fully colonize this region, these species presumably adjusted

their phenology to seasonal rainfall patterns (i.e. severe

summer drought, with the majority of rainfall in the winter).

Because members of Scabiosa were already successful in

colonizing dry habitats such as rocky mountain meadows

and steppes, perhaps they were pre-adapted to survive in

Mediterranean regions (Ackerly, 2004). In other words, their

physiological ecology may have been ‘half way there’, but

adaptations to the seasonal drought and rainfall of Mediter-

ranean regions (e.g. leaf shape and pubescence) were more

recent.
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