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OUTGROUP ANALYSIS AND PARSIMONY
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Abstract. —Methods that use outgroups in the reconstruction of phylogeny are described and
evaluated by the criterion of parsimony. By considering the character states and relationships
of outgroups, one can estimate the states ancestral for a study group or ingroup, even when
several character states are found among the outgroups. Algorithms and rules are presented
that find the most parsimonious estimates of ancestral states for binary and multistate characters
when outgroup relationships are well resolved. Other rules indicate the extent to which un-
certainty about outgroup relationships leads to uncertainty about the ancestral states. The al-
gorithms and rules are based on “simple parsimony” in that convergences and reversals are
counted equally. After parsimony is measured locally among the outgroups to estimate ancestral
states, parsimony is measured locally within the ingroup, given the ancestral states, to find the
ingroup cladogram. This two-step procedure is shown to find the ingroup cladograms that are
most parsimonious globally; that is, most parsimonious when parsimony is measured simulta-
neously over the ingroup and outgroups. However, the two-step procedure is guaranteed to
achieve global parsimony only when: (a) outgroup relationships are sufficiently resolved be-
forehand; (b) outgroup analysis is taken to indicate the state not in the most recent common
ancestor of the ingroup, but in a more distant ancestor; and (c) ancestral states are considered
while the ingroup is being resolved, not merely added afterward to root an unrooted network.
The criterion of global parsimony is then applied to evaluate procedures used when outgroup
relationships are poorly resolved. The procedure that chooses as ancestral the state occurring
most commonly among the outgroups can sometimes yield cladograms that are not globally
parsimonious. By the criterion of global parsimony, the best procedure is one that simultaneous-
ly resolves the outgroups and ingroup with the data at hand. Finally, simple parsimony can
choose among competing hypotheses, but it often fails to indicate how much confidence can be
placed in that choice. [Phylogeny reconstruction; cladistic methods; outgroup analysis; character

polarity; parsimony.]

This paper explores the use of outgroup
analysis in phylogeny reconstruction.
When reconstructing a phylogeny, a sys-
tematist asks: Given a group of organisms
(the ingroup), what are the monophyletic
subgroups? If the members of a subgroup
share a character state that is derived with-
in the group, the monophyly of this
subgroup is corroborated (Hennig, 1966;
Wiley, 1975). Hence, systematists attempt-
ing to infer phylogenies have sought
methods for determining whether a given
character state is derived (apomorphic) or
ancestral (plesiomorphic). Many methods
for assessing the evolutionary polarity of
characters have been proposed, including
outgroup analysis, ingroup analysis, the
ontogenetic method, and the paleontolog-
ical method. These approaches have been
reviewed recently by Crisci and Stuessy
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(1980), de Jong (1980), Stevens (1980), Ar-
nold (1981), Nelson and Platnick (1981),
and others. The methods perhaps most
widely accepted today are outgroup anal-
ysis and the ontogenetic method, the rel-
ative merits of which are still being de-
bated (contrast Nelson [1978] and Patterson
[1982] with Lundberg [1973], Wheeler
[1981] and Voorzanger and van der Steen
[1982]).

In its simplest form, outgroup analysis
can be summarized by the following rule
(Watrous and Wheeler, 1981): For a given
character with two or more states within
a group, the state occurring in related
groups is assumed to be the plesiomorphic
state. This rule is inadequate, however,
when characters vary among the related
groups (the outgroups). Arnold (1981) and
Farris (1982) have dealt with some cases of
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variation among the outgroups, but as yet
no general treatment of the problem is
available. Hence, we give general algo-
rithms and rules which find the simplest
(most parsimonious) hypothesis of ances-
tral state given that outgroup relation-
ships are well enough resolved. Because
outgroup relationships are often uncer-
tain, we discuss the extent to which un-
certainty about outgroups leads to uncer-
tainty about the ancestral states.

Examination of outgroups helps to en-
sure that the ingroup cladograms obtained
are parsimonious, not merely within the
ingroup, but when considered in the con-
text of related groups (Engelmann and Wi-
ley, 1977; Farris, 1980, 1982). If one were
to study the ingroup in isolation, one
would choose ingroup cladograms that are
locally parsimonious. However, some of
these locally-parsimonious ingroup clado-
grams may force unnecessary hypotheses
of convergence and reversal in the out-
groups. Such ingroup cladograms should
be avoided. Therefore, to ensure a more
global parsimony over a larger group of
organisms, one should examine the out-
groups as well, choosing ingroup clado-
grams that are parsimonious globally, over
the ingroup and outgroups together.
However, not all procedures that use out-
groups obtain globally parsimonious
cladograms.

We examine several cladistic procedures
to determine whether they achieve global
parsimony. Suppose that outgroup rela-
tionships are well resolved. One common
procedure estimates ancestral states using
outgroup analysis, and then resolves the
ingroup given these ancestral states. Al-
though this two-step procedure examines
separately parsimony in the outgroups and
ingroup, we show that when properly
done it finds the cladograms that are most
parsimonious over the outgroups and in-
group together. However, the procedure
may fail to achieve global parsimony if
outgroup analysis is taken to indicate the
state in the most recent common ancestor
of the ingroup (as done, for instance, by
Wiley, 1981) or if an unrooted network for
the ingroup is first resolved without ref-

erence to the ancestral states (as done by
Lundberg, 1972). We then evaluate pro-
cedures for use when outgroup relation-
ships are uncertain. Some authors (e.g.,
Arnold, 1981) have suggested that the state
appearing most commonly among the out-
groups can be taken to be ancestral. This
procedure can choose cladograms that are
not globally parsimonious. The outgroup
substitution approach of Donoghue and
Cantino (1984) will not yield an unparsi-
monious cladogram, but it may leave the
cladogram poorly resolved. In some cases,
a more resolved cladogram results when
the outgroup and ingroup relationships are
resolved simultaneously with the data at
hand.

Our treatment is based on what we call
“simple parsimony”’; that is, we prefer
those hypotheses that require the fewest
ad hoc hypotheses of character state
change (Farris, 1983), counting conver-
gences and reversals equally. We note in
the final section that although simple par-
simony can choose among competing hy-
potheses, it often does not specify the con-
fidence that can be placed in the choice
(Farris, 1983).

TERMS AND CONVENTIONS

Figures 1 and 2 illustrate some terms and
conventions used throughout this paper.
The goal of phylogeny reconstruction is to
resolve cladistic structure within the in-
group, shown as a triangle (after Arnold,
1981). Character states ancestral for the in-
group are estimated on the basis of the
states and interrelationships of the out-
groups, shown on the left-hand portion of
the cladogram. Figure 1 shows a single
outgroup; Figure 2 shows four outgroups,
the first outgroup (i.e., the sister group to
the ingroup) having three terminal taxa.
Note that we use “outgroup” to mean a
clade that attaches to the stem coming
down from the ingroup. The most recent
common ancestor of the ingroup is rep-
resented on the cladogram by the ingroup
node, whereas the most recent common
ancestor of the ingroup and first outgroup
is represented by the outgroup node (Fig.
1).
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a ababaa a
FiG. 1. Terms and symbols used throughout the

paper. The unresolved ingroup is shown as a trian-
gle. There may be more than one outgroup.

At the start of an analysis, the relation-
ships within and among the outgroups
may be well known (fully resolved), or
poorly known (largely unresolved, uncer-
tain). Figure 2 shows relationships among
outgroups fully resolved (Figs. 10A and
10B show relationships among and within
outgroups poorly resolved). We will deal
only with cladograms that have divergent
dichotomies or polychotomies represent-
ing uncertainty, not with cladograms that
have reticulations or polychotomies rep-
resenting multiple speciation. Whatever is
assumed about outgroup relationships at
the beginning of the analysis is taken as
given for the subsequent analysis, and not
to be challenged.

In our treatment, outgroup analysis es-
timates the state of a character in the most
recent common ancestor of the ingroup
and first outgroup (at the outgroup node).
We discuss below under “Global Parsi-
mony”’ our reasons for estimating at the

outgroup node. Depending on the states
and relationships of the outgroups, some
states of the character can be more parsi-
moniously assigned to the outgroup node
than can others; that is, some assignments
to the outgroup node will require fewer
hypotheses of convergence and reversal in
the outgroup portion of the cladogram.
Several assignments may be equally most
parsimonious. The ancestral state assessment
for a character is a statement listing all of
the states that are most parsimonious as-
signments to the outgroup node. When
only one most parsimonious assignment
exists, the ancestral state assessment is said
to be decisive. When more than one state
can be assigned to the outgroup node with
equal and maximum parsimony the as-
sessment is equivocal.

Our results hold whether one views a
cladogram as a diagram that indicates re-
cency of common ancestry (Nelson, 1974)
or as a diagram that indicates only the pat-
terns of character distributions (Nelson
and Platnick, 1981). If the cladogram is in-
terpreted as indicating character distribu-
tions, then the assignment of states to
nodes can be interpreted as merely a book-
keeping procedure to keep track of char-
acter distributions. Under this interpreta-
tion, outgroup analysis finds the
assignment to the outgroup node that re-
quires the fewest hypotheses of characters
in the outgroup portion of the cladogram,
and the results presented below hold mu-
tatis mutandis.

outgroups ingroup
b a a b b a
resolve
ingroup
lusing all
) > characters)
! estimate a
ancestral
state

[for each character)

FiG. 2. Two-step cladistic analysis. First, the ancestral states (at the outgroup node) are estimated using
the outgroups and parsimony. Second, the most parsimonious ingroup cladogram is sought.
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F1G. 3. The use of parsimony to assess the state at
the outgroup node. Ancestral state assessment shown
below each example. (A) State a requires no steps
and, hence, is more parsimonious than state b. (B and
C) a and b are equally parsimonious.

THE OUTGROUP ALGORITHM

In simple examples (e.g., Fig. 3), the most
parsimonious estimates of the ancestral
states at the outgroup node can be easily
determined by inspection. If there is a sin-
gle outgroup, with state a (Fig. 3A), it is
more parsimonious to assume that a is an-
cestral, because the assumption that b is
ancestral requires an unnecessary step be-
tween the outgroup node and the out-
group. Thus, the ancestral state assessment
is a decisive “a.” If there are two out-
groups, one with a and one with b, then
one step is required regardless of whether
state a or b is assigned to the outgroup
node (Fig. 3B). Because a and b are equally
parsimonious assignments to the out-
group node, the ancestral state assessment
is equivocal, written “a,b.” When two ad-
ditional outgroups with b are added, the
assessment remains equivocal (Fig. 3C).
Three more-basal b’s do not overrule the
single a, which illustrates that the most

parsimonious assignment to the outgroup
node is not simply a function of the ab-
solute number of outgroups with a partic-
ular state.

In more complex situations (Fig. 2), an
algorithm that directly yields the most
parsimonious assignments would be use-
ful. Farris (1970) presented an algorithm
for finding some of the most parsimonious
assignments to all nodes of a cladogram.
The algorithm applies to ordered charac-
ters and has been called “Farris optimiza-
tion” (Mickevich and Mitter, 1981). Fitch
(1971) presented a similar algorithm for
unordered characters. These algorithms,
intended for whole cladograms, can be
adapted to outgroup analysis in order to
find the assignments for the outgroup
node that are most parsimonious accord-
ing to the outgroups.

Our outgroup algorithms adapt the Farris
and Fitch algorithms to outgroup analysis.
An algorithm for binary (a,b) characters,
consisting of steps (1) and (2) is presented
immediately below. (Appendix 1 gives al-
gorithms for multistate characters, includ-
ing for the first time an algorithm for char-
acter state trees. The algorithms apply to
fully resolved outgroup relationships. A
sketch of the proof of these algorithms is
given in Appendix 2. Immediately follow-
ing the binary algorithm is an example of
its application.)

(1) Label terminal taxa among the out-
groups by their observed states. (When a
terminal taxon has both states a and b,
there are two possible procedures. One
could deny that the taxon’s internal cla-
distic structure can be resolved [because,
for example, the taxon is a polymorphic
species]. In this case label the taxon “a,b”
and continue. Alternately, one could ac-
cept that the taxon’s cladistic structure can
be resolved. In this case the algorithm is
not directly applicable, and the problem
should be treated as one of uncertain out-
group relationships.)

(2) Proceed from the outgroup terminal
taxa toward the outgroup node, labelling
nodes according to the following rule,
which is like a voting procedure (Figs. 4A~
C). Label a node “a” if the two immedi-
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b a a b b a

B

b a a b b a
b

a,b

FIG. 4. An application of the outgroup algorithm for binary characters. The internal nodes are labelled,
starting at the outgroup terminal taxa and proceeding toward the outgroup node (O.N.).

ately-adjacent nodes that are farther from
the outgroup node are labelled “a” and
“a,” or “a” and “a,b.” Label a node “b" if
the two immediately-adjacent nodes that
are farther from the outgroup node are la-
belled “b” and “b,” or “b”" and “a,b.”” La-
bel a node “a,b” if they are labelled “a”
and “b,” or “a,b”’ and “a,b.” Count the ter-
minal taxa as nodes, but not the root of
the cladogram (the algorithm would have
difficulty around the root if it were count-
ed as a node). Labelling proceeds toward
the outgroup node, until finally a label is
applied to the outgroup node (Fig. 4C).
This label indicates the assignment(s) to
the outgroup node that is (are) most par-
simonious according to the outgroups. If
the outgroup node is labelled “ab,” the
assessment is equivocal.

To clarify the algorithm, we will de-
scribe its application to the example in
Figure 4. Within the first outgroup, one
proceeds down toward its basal node (Figs.
4A and 4B). Among outgroups, one pro-
ceeds up toward the outgroup node. Since
the root is not counted as a node, the two
nodes immediately adjacent to the node
labelled “a,b” in Figure 4A, but farther
from the outgroup node, are the last and
second last outgroups. Thus, the labels
from the last and second last outgroups
are combined to give this label “a,b” (Fig.
4A). Then, this label “a,b” is combined
with the label “a” from the third last out-
group to yield “a” (Fig. 4B). Then, this la-
bel “a” is combined with “a,b” from the
first outgroup’s basal node to yield “a” at
the outgroup node (Fig. 4C). Thus, one

considers votes of successively less and less
distant outgroups, until at the final step
the label from the first outgroup is com-
bined with the label derived from all more
distant outgroups.

Labelling toward the outgroup node
simplifies the outgroup algorithm. Both
Farris’s (1970) and Fitch’s (1971) algo-
rithms have a first pass (Farris’s R-1 and
R-2) or preliminary phase which proceeds
from the terminal taxa toward the root of
a cladogram. The first pass or preliminary
phase alone is sufficient to find all most
parsimonious assignments to the root (Ap-
pendix 2). Subsequent procedures assign
states to nodes other than the root. Our
outgroup algorithm is equivalent to the
first pass or preliminary phase, modified
to proceed toward the outgroup node in-
stead of the root (the first pass or prelim-
inary phase can be used unmodified if the
outgroup node is first made into the root
by rerooting). Because the outgroup algo-
rithm proceeds toward the outgroup node
as if it were the root, it succeeds in finding
all most parsimonious assignments to the
outgroup node. Thus, we waive the sub-
sequent procedures, and avoid the occa-
sional failure of Farris’s algorithm to find
all most parsimonious assignments to non-
root nodes (Swofford and Maddison, un-
publ. manuscript).

The outgroup algorithm gives rise to two
simple rules that allow quick and accurate
assessment of the ancestral state for binary
characters. Suppose each outgroup has
only a single state. Then there are two
possibilities. First, as one looks outward
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FiG. 5. Simple rules derived from the algorithm.
(A and B) First doublet rule. (C and D) Alternating
outgroup rule.

from the ingroup, one may encounter a
doublet (i.e., a pair of consecutive out-
groups that agree in state). In this case the
first doublet rule applies: If the first out-
group and the first doublet have the same
state, then that state is the most parsimo-
nious assignment (Fig. 5A); if they differ,
then the decision is equivocal (Fig. 5B). A
special case of this rule is particularly im-
portant: When the first two outgroups have
the same state, then this state is the most
parsimonious assignment, no matter what
states are shown by outgroups farther from
the ingroup. However, there may be no
doublets. In this case, the alternating out-
group rule applies: If the first and last out-
group have the same state, that state is the
most parsimonious assignment (Fig. 5C);
if they differ, the decision is equivocal (Fig.
5D). These two rules apply even when
there is a heterogeneous outgroup, as long
as enough is known of its internal cladis-
tic structure. Any such outgroup can be
represented by a single labelled node by
applying the outgroup algorithm within
the outgroup to yield a label for the out-
group’s basal node. This procedure can be
thought of as estimating the ancestral state
for that outgroup. For example, in Figure
2 the first outgroup could be replaced by
a node labelled “a,b.” Any outgroups rep-

resented by “a,b” can be eliminated, and
the rules applied.

The outgroup algorithm should be ap-
plied to the outgroups without regard to
the states that appear in the ingroup. Sup-
pose there is a multistate character with
states a and b in the ingroup and states a
and c among the outgroups. De Jong (1980:
12) and Watrous and Wheeler (1981) sug-
gested that, in such a case, a should be the
estimate of the ancestral state, since it is
the only state that occurs in both the out-
groups and ingroup. As Farris (1982:331)
showed by example, this procedure which
ignores state ¢ is sometimes not parsimo-
nious. One should instead apply the out-
group algorithm to states a and c¢ (if out-
group relationships are sufficiently
resolved). Depending on the outgroup re-
lationships, the resulting ancestral state
assessment could be “a,” “a.c” or “c.”
When the ancestral state assessment at the
outgroup node is a decisive “a,” the out-
groups will prefer (at least with respect to
this character) those ingroup cladograms
that place a at the adjacent ingroup node.
When the assessment is a decisive “¢,” the
outgroups show no preference between
those ingroup cladograms that place a and
those that place b at the ingroup node,
because one step is required in either case
between the outgroup and ingroup nodes.
Similarly, with an “a,b” assessment, the
outgroups would show no preference be-
tween those ingroup cladograms that place
a and those that place b at the ingroup
node. Thus, with respect to ingroup reso-
lution, an assessment of “c” is equivalent
to “a,b.”” An assessment of “a,c” is equiv-
alent to an assessment of “a” with respect
to ingroup resolution.

Is information from outgroups adequate
to estimate the ancestral states at the out-
group node, or should information from
the ingroup also be used? The outgroup
algorithm determines the set of estimates
of the ancestral state that are most parsi-
monious according to the outgroups only.
Once the ingroup is resolved, it is possible
that some of these estimates will no longer
be among the most parsimonious or that
there will be additional states that are
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equally parsimonious, when parsimony is
then measured considering the ingroup as
well as the outgroups. Should one there-
fore make new estimates of ancestral states
based on the outgroups and ingroup, and
redo the cladistic analysis? No. The set of
old estimates based only on the outgroups
is adequate to find the globally most par-
simonious ingroup cladograms (discussed
under “Global Parsimony”). Hence, one
could do no better with the new estimates,
if one only needs to resolve the ingroup
cladogram. However, if one needs to ob-
tain ancestral state estimates for other pur-
poses, such as evolutionary modelling of
character transformation, it is advisable to
resolve the ingroup cladogram as much as
possible, and then apply the algorithms of
Fitch (1971) or Farris (1970, as modified by
Swofford and Maddison, unpubl. manu-
script) to the outgroups together with the
ingroup, in order to determine the state at
the outgroup node (or any node). Thus,
ancestral state estimates based only on the
outgroups are adequate for finding the
globally most parsimonious cladograms,
but sometimes they are not adequate for
general discussions of character transfor-
mation.

UNCERTAIN OUTGROUP RELATIONSHIPS

Will an uncertainty about outgroup re-
lationships lead to uncertainty about the
ancestral state? If so, how does one pro-
ceed with cladistic analysis? In this section
we consider these two questions in turn.

Uncertain resolution of outgroup rela-
tionships may or may not lead to uncer-
tainty about the ancestral state. In the triv-
ial case, if all outgroups have the same
state, then that state will be the ancestral
state estimate regardless of outgroup re-
lationships. When the character varies, one
can determine whether the ancestral state
assessment differs under alternative out-
group resolutions by applying the out-
group algorithm to each resolution. Be-
cause it can be tedious to apply the
algorithm to every one, we have derived
some rules from the outgroup algorithm
which give an indication of the extent to

which different resolutions yield the same
ancestral state assessments.

Most of the uncertainties addressed by
the rules, and indeed throughout the pa-
per, involve uncertain resolution of the
included outgroups. There can also be un-
certainty about whether all and only rel-
evant outgroups have been included in the
analysis. As more specimens are examined
or higher level relationships are better
understood, outgroups could be added or
subtracted. Rule 4 below describes the ef-
fects of adding or subtracting outgroups.

The rules describe situations in’ which
the uncertainties in the outgroup relation-
ships will have no (Rules 1 and 2) or only
limited (Rules 3 to 6) effects on the ances-
tral state assessment. The effects are lim-
ited in that the assessment will not com-
pletely shift if the outgroup relationships
are found to be one of the alternatives in-
stead of another. That is, for binary char-
acters, the assessment can change from de-
cisive (say, “a”) to equivocal (“a,b”), or
from equivocal to decisive, but it cannot
completely shift from decisive “a” to de-
cisive “b” (or vice versa). For the more
general case of multistate characters, the
new and old assessments must overlap—
at least one of the states judged to be a
most parsimonious assignment to the out-
group node by one alternative resolution
will also be judged most parsimonious by
the other. There are circumstances in
which such limited changes will not affect
the ingroup cladogram, but in other cir-
cumstances they will. Although a binary
character with an equivocal ancestral state
assessment can still help resolve the un-
rooted form of the ingroup cladogram, the
character has lost all power to choose the
root of the cladogram. Thus, if an assess-
ment changes from decisive to equivocal,
the balance among conflicting characters
may change, resulting in a different in-
group cladogram.

Rules 1 to 4 and 6 are valid for binary
and the three sorts of multistate characters
of Appendix 1. Rule 5 is valid for binary
characters.

Rule 1.—1If two consecutive outgroups (as
one looks outward from the ingroup, Fig.
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FiG. 6. The buffering effect of doublets. Groups
beyond the doublet have no effect on the polarity
assessment (Rule 1 of “Uncertain Outgroup Relation-
ships”).

6A) have the same single state then out-
groups farther out will have no effect on
the ancestral state assessment. Thus, un-
certainties about outgroup relationships or
states beyond a doublet are irrelevant.
Likewise, within an outgroup, if two con-
secutive terminal taxa (as one looks up-
ward from the base of the outgroup, Fig.
6B) have the same state then terminal taxa
farther up have no effect.

Rule 2.—The position of the root within
the outgroup portion of the cladogram can
be changed without affecting the ancestral
state assessment (Fig. 7). The outgroup al-
gorithm proceeds from the terminal taxa
toward the outgroup node (step 2) and ig-
nores the “true” root of the outgroup por-
tion. Thus, for instance, when there are
only two outgroups, the same ancestral
state assessment results regardless of which
group is placed as the sister group to the
ingroup (see Fig. 3B).

Rule 3.—If the first outgroup has a sin-
gle state (or if its basal node receives a
label containing a single state), the assess-

baabb a baabba
a
new
root
A old root g new root
Fic. 7. If the position of the root moves from one

point to another among the outgroups, the polarity
assessment is not affected (Rule 2).

aor

aor ab

ab

A B

FiG. 8. The importance of (A) the first outgroup
and (B) the basalmost member of a heterogeneous
outgroup (Rule 3).

ment for the outgroup node must be either
decisive for that state, or equivocal (Fig.
8A). More distant outgroups cannot com-
pletely shift the assessment away from the
state in the first outgroup. In general, at
least one of the states in the label of the
first outgroup’s basal node must be a most
parsimonious assignment to the outgroup
node. The first outgroup has the most in-
fluence on the most parsimonious assign-
ment even if that outgroup is considered
highly derived. An appeal to a supposedly
primitive but distant outgroup, and avoid-
ance of a highly derived sister group, are
not justified by our parsimony framework.
Within an outgroup, a basalmost terminal
taxon (i.e., one that is the sister group to
the rest of the outgroup) has the most in-
fluence on the label given to that out-
group’s basal node by the algorithm (Fig.
8B). According to our parsimony frame-
work, the basal members of a heteroge-
neous outgroup have the most influence
on the ancestral state assessment not be-
cause they are primitive in most characters
and thus should have primitive states of
the characters of interest, but because they
will have the most influence on the most
parsimonious assignment to the outgroup
node.

Rule 4.— A single addition or deletion of
an outgroup (or of a single terminal taxon
in an outgroup) cannot completely shift
an assessment, no matter where the out-
group is added or subtracted (Fig. 9A). It
takes at least two additions or deletions to
shift an assessment. Note, however, that
even a distant addition can affect the as-
sessment (compare Figs. 5C and 5D).

Rule 5.—Moving a single outgroup (or a
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FIG. 9. The effect of adding or moving a single
outgroup. New and old assessments shown. The as-
sessment can change from decisive to equivocal or
vice versa, but not decisive “a” to decisive “b”’ (Rules
4 and 5).

single terminal taxon) from one position
to another cannot completely shift an as-
sessment (Fig. 9B). It takes at least two
moves to shift an assessment. This rule
holds for binary characters. We have been
unable to prove or disprove the rule for
multistate characters in general.

Rule 6.—When only one of several out-
groups has state b (for example), then the
ancestral state assessment cannot be deci-
sive for state b, regardless of how the out-
groups are arranged (Fig. 10A). Thus, for
binary characters, the assessment must be
either “a” or “ab.” Likewise, within an
outgroup, the basal node cannot receive
the label “b” when only one of several
terminal taxa has state b (Fig. 10B).

We should clarify the distinction be-
tween equivocal assessments and the un-
certainty in assessments described above.
An equivocal assessment arises when, ac-
cording to a single outgroup resolution,
there are equally parsimonious assign-
ments to the outgroup node. Uncertainty
in assessments arises when there are sev-
eral plausible outgroup resolutions which
yield different ancestral state assessments
(some of which may be equivocal, others
decisive). This uncertainty might be over-
come by resolving the outgroups to a sin-
gle arrangement, but even then the re-
sulting assessment could be equivocal.
Equivocal assessments can only be over-
come by adding or subtracting outgroups
or terminal taxa within outgroups.

When the ancestral state assessment dif-
fers according to the different outgroup

several outgroups, the ancestral state assessment can-
not be decisive for that state (Rule 6). (B) The same
is true for the assessment of the ancestral state within
an outgroup.

resolutions, how does one proceed with
cladistic analysis? We will not discuss the
case where uncertainty exists about
whether all and only the relevant out-
groups have been included in the analysis
(see instead Donoghue and Cantino, 1984).
Since uncertainty about inclusion arises
from uncertainty about resolution at a
higher level, in some cases it may be better
to include all plausibly related groups that
have been investigated and treat the un-
certainty as uncertainty about the resolu-
tion of their interrelationships. We de-
scribe below some procedures (evaluated
in the next section) one might follow when
uncertainty exists about the relationships
of the included outgroups.

In the best of worlds one would per-
form a higher level analysis to resolve out-
group relationships with more and new
data. This procedure is attractive, but it
transfers the problem to a higher level
where the same uncertainties may be pres-
ent. Eventually, practical limitations will
force a systematist to stop backtracking,
and to analyze the data at hand.

Failing a higher level analysis, one
might appeal to a criterion other than sim-
ple parsimony to make an ancestral state
assessment despite uncertain outgroup
relationships. One could assume irreversi-
bility or progress towards presumed opti-
mality. Alternately, one could use the pre-
dominant-states method, in which the state
appearing most commonly among the out-
groups is taken to be ancestral for the in-
group. This method has been implied or
at least allowed by previous formulations
of outgroup analysis. Kluge and Farris
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(1969) used the criterion: “The primitive
state of a character for a particular group
is likely to be present in many of the rep-
resentatives of related groups.” Arnold
(1981:10) explicitly accepted the predom-
inant states method even though he re-
jected common-is-primitive ingroup anal-
ysis. Predictably, an appeal to criteria other
than simple parsimony to make an ances-
tral state assessment can lead to clado-
grams that are not globally parsimonious.

Another option when faced with uncer-
tain outgroup relationships is to stay with-
in the bounds of simple parsimony, pos-
sibly reducing some of the uncertainty
with the data at hand. For each alternative
outgroup resolution, ancestral states can be
estimated. All of the alternative ancestral
state estimates in all of the characters can
be summarized by a set of possible hypo-
thetical ancestors, each describing the an-
cestral state in all characters. For each hy-
pothetical ancestor, a candidate ingroup
cladogram can be resolved. If there are
many alternative outgroup resolutions,
there may be many candidate ingroup
cladograms among which to choose. Some
candidates can be selected as more parsi-
monious with respect to the ingroup, out-
groups, or both. Thus, despite uncertainty
about ancestral states it may be possible to
select a single ingroup cladogram. We dis-
cuss such a selection procedure in more
detail below.

GLOBAL PARSIMONY

A globally most parsimonious ingroup
cladogram is one which requires the few-
est hypotheses of convergence and rever-
sal (in all characters examined) within the
ingroup and among the outgroups. Thus,
such a cladogram is not merely most par-
simonious locally, but is most parsimoni-
ous in the context of related groups (En-
gelmann and Wiley, 1977; Farris, 1980:511;
Wiley, 1981:112, 128). An ingroup clado-
gram can be more or less parsimonious
with respect to the outgroups because it
can force unnecessary hypotheses of con-
vergence and reversal in the outgroups or
below the ingroup. For instance, the in-
group cladograms in Figures 11A and 11B

C D

FiG. 11. Global parsimony. Cladogram A is more
parsimonious than B when an outgroup is considered
(C and D).

each require one step in isolation, but
when they are placed in the context of an
outgroup (as in Figs. 11C and 11D, respec-
tively), cladogram 11B forces an unneces-
sary step beneath the ingroup or within
the outgroup (Fig. 11D). Thus, cladograms
11A and 11B are equally parsimonious lo-
cally, but cladogram 11A is more parsi-
monjous globally. Although outgroups
must be examined to ensure that clado-
grams are globally parsimonious, not every
procedure that uses outgroups will yield
globally most parsimonious ingroup
cladograms. We evaluate several proce-
dures below.

Outgroup relationships well resolved before-
hand.—When outgroup relationships are
well resolved beforehand, a two-step pro-
cedure can be followed (Fig. 2). First, an-
cestral states are estimated. Second, the in-
group cladogram is sought. In practice,
cladistic analysis often follows this model.
Without aid of a computer, one estimates
ancestral states using outgroups, then at-
tempts to find the most parsimonious in-
group cladogram (remembering that the
ingroup’s ancestor started out with the es-
timated ancestral states). By computer, one
includes a hypothetical ancestral taxon
(synthesized by outgroup analysis) with
the ingroup terminal taxa in an analysis
searching for Wagner trees (Farris, 1970),
then afterward roots the network at the
hypothetical ancestor (Kluge and Farris,
1969).
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ingroup resolved
in the context of
the outgroups

FIG. 12. One-step cladistic analysis. The parsimony of each possible ingroup cladogram is measured glob-
ally, over the ingroup and outgroups together, using all characters. Thus, the ingroup is resolved with the

outgroups attached.

This two-step procedure can be com-
pared with a one-step procedure which
maintains the outgroups attached to the
ingroup throughout the analysis (Fig. 12)
and chooses ingroup cladograms by mea-
suring their parsimony over the ingroup
and outgroups together. This one-step
procedure directly measures the global
parsimony of an ingroup cladogram, and
therefore it is guaranteed to find the glob-
ally most parsimonious ingroup clado-
grams, providing it exhaustively examines
all possible ingroup cladograms. In con-
trast, the two-step procedure evaluates
parsimony in two disjoint phases. First,
parsimony is considered locally among the
outgroups to estimate the ancestral states.
Second, parsimony is considered locally
within the ingroup (given the estimated
states are ancestral) to choose the ingroup
cladogram.

Does the two-step procedure find the
ingroup cladograms that are most parsi-
monious over the outgroups and ingroup
together? In a sense, the globally most
parsimonious ingroup cladogram is a com-
promise, resulting from the conflict be-
tween the states that the outgroups “want”
to have at the outgroup node, and the
states suggested by the resolution that the
ingroup “wants” to have on its own. The
first step of the two-step procedure, esti-
mating the ancestral states, makes a com-
mitment to the states at the outgroup node.
Hence, the outgroups make their final of-
fer of ancestral states at the beginning of
the analysis, after which the ingroup must
suffer with the ancestral state assess-
ments—Dbargaining back and forth is pre-

vented. It seemed possible to us that the
cladogram obtained would not represent
the best mutual compromise. Fortunately,
however, the two-step procedure does in
fact give the ingroup cladograms that are
most parsimonious over the ingroup and
outgroups together (proof in Appendix 3).
More precisely, the following two proce-
dures yield all and only the same clado-
grams. (1) Estimate ancestral states by the
outgroup algorithm, then find the most
parsimonious ingroup cladograms given
these ancestral states (two-step procedure,
Fig. 2). (2) Maintain the outgroups
throughout the analysis and find the most
parsimonious ingroup cladograms when
parsimony is measured over both ingroup
and outgroups together (one-step proce-
dure, Fig. 12). This global parsimony re-
sult holds for data sets consisting of binary
characters, any of the three sorts of mul-
tistate characters described in Appendix 1,
or combinations thereof. It holds whether
these characters are equally or differen-
tially weighted.

An initial commitment to the states in
the most recent common ancestor of the
ingroup (the ingroup node) might pre-
vent the discovery of the globally most
parsimonious cladograms. For this reason,
we treat the estimate of the ancestral states
as referring to an ancestor more distant
than the ingroup node. For example, sup-
pose state a occurs in the outgroups, and
states a and b in the ingroup. Wiley’s
(1981) formulation of outgroup analysis
and the second part of the operational rule
of Watrous and Wheeler (1981) would as-
sume that b is apomorphic. If b is pre-
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sumed apomorphic within the ingroup,
then state a was present in the most recent
common ancestor of the ingroup (the bas-
al dichotomy of the ingroup) and state b
was derived one or more times within the
ingroup. Wiley (1981:141), in his discus-
sion of his figure 5.11f, assumes as much,
for he assumes his state 2’ was at the basal
dichotomy of the ingroup, and ignores the
equally parsimonious possibility that 2 was
there (see also Farris, 1982:331). The as-
sumption that state a was at the basal di-
chotomy of the ingroup might later force
one to view as independent derivations
two instances of state b that appear on op-
posite sides of the dichotomy. On the oth-
er hand, treating outgroup analysis as a
procedure for estimating the state in an
ancestor below the point of the dichotomy
allows the state to change to b before the
dichotomy. This can save steps and lead to
more parsimonious cladograms. For ex-
ample, in Figure 13A characters 1-30 par-
tially resolve the cladogram as shown.
When an initial commitment is made to
the states at the ingroup node (Fig. 13B),
(DEF) is resolved to ((DE)F) by character
32. When the initial commitment is to the
states at the outgroup node, the globally
most parsimonious resolution (D(EF)) is
obtained (Fig. 13C). An initial commit-
ment to the state in the most recent com-
mon ancestor places too strong a con-
straint on the resolution of the ingroup
cladogram (Lundberg, 1972:410); an initial
commitment about the more distant out-
group node does not. One can treat out-
group analysis as estimating the state in
the most recent common ancestor of the
ingroup as long as it is only a provisional
estimate and not a commitment. In cases
of character conflict within the ingroup,
one should be willing to reassess the state
at the ingroup node, perhaps putting b
there and having a apomorphic within the
ingroup. Such a provisional estimate at the
ingroup node, if done properly, is equiv-
alent to an initial commitment at the out-
group node.

Because the outgroup node is below the
basal dichotomy of the ingroup and be-
cause it is a convenient landmark, we have

ogABCDEF ogABCDEF
110 [aabbbbb 31[abbbbaa
11-20la aa abbb| 32lababbba
21-30la a baaa
Y B 2 IN
A ON.
C
gO.N.

Fic. 13. Hypothetical data set of 32 characters with
states a and b distributed as shown. (A) Characters
1-30 partially resolve ingroup. (B and C) Characters
31 and 32 resolve ingroup further. Treating the es-
timate of ancestral state as referring to the outgroup
node (O.N.) gives more parsimonious cladogram (C)
than treating it as referring to the ingroup node (L.N.;
B). Definitions: OG, outgroup; A-F, ingroup terminal
taxa.

used the outgroup node for our ancestral
state assessments. Any point between the
ingroup node and the outgroup node could
have served as well.

The ancestral state estimates must be in-
cluded in the analysis while the ingroup
is being resolved (Fig. 2). If an unrooted
network is found for the ingroup alone
without reference to the ancestral states,
and this network is afterward rooted by
attaching the “hypothetical ancestor” rep-
resenting the estimated ancestral states
(Lundberg, 1972), a cladogram that is not
globally parsimonious might be chosen.
Imagine that T were the only terminal tax-
on in the outgroup in the example of Fig-
ure 14. If T were added to A-E after an
unrooted network had been found for A-
E, the cladogram obtained would be
(AB)(C(DE)) (Fig. 14B). This resolution,
chosen when the ingroup is resolved in
isolation from the outgroup, is most par-
simonious locally. However, when T is
considered throughout the analysis,
(AB)((CD)E) is obtained (Fig. 14C), which
is more parsimonious globally.

In order for the two-step procedure to
find the globally most parsimonious
cladograms, the second step must find the
ingroup cladograms most parsimonious
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outgroup  ingroup
PQRSTABCDE

1-10laaaaabb aa |
1120laaaaaaa bbb

POQRSTABCDE

21253aabbbbbbb
abbbbb

31 bbbaabbba

32lbbbaaabbb

DOT

C

Fic. 14. Another data set of 32 characters with
states a and b distributed as shown. (A) Characters
1-20 partially resolve the ingroup. (B and C) Char-
acters 21-32 resolve the ingroup further. Simulta-
neously resolving the outgroup and the ingroup gives
more parsimonious cladogram (C) than assuming the
most common state within the outgroup to be ances-
tral (B). If T were the only outgroup terminal taxon,
finding the unrooted network for the ingroup alone
then attaching T would give a less than most parsi-
monious cladogram.

locally given the ancestral states. If the
second step fails to do this, the two-step
procedure may fail to find the globally
most parsimonious cladograms. Given the
difficulty of judging parsimony by eye and
of finding the most parsimonious clado-
grams by computer (Felsenstein, 1982), the
second step may often fail.

Outgroup relationships poorly resolved.—
Two procedures were introduced above for
dealing with uncertain ancestral state as-
sessments arising from uncertain out-
group relationships. The first is the pre-
dominant-states method. The second
resolves various candidate ingroup clado-
grams and possibly selects among them.
We discuss these procedures below and
evaluate them by the criterion of global
parsimony. Our main result is that the in-
group and outgroups can sometimes be re-
solved simultaneously with the data at
hand to yield a well resolved and globally
most parsimonious ingroup cladogram.

The predominant-states method steps
outside of simple parsimony to make a de-
cision about the ancestral state. When in-

terrelationships among outgroups are un-
resolved (Fig. 10A), the predominant-states
method assumes that the ancestral state for
the ingroup is the state most common
among the outgroups. When the relation-
ships of terminal taxa within an outgroup
are unresolved (Fig. 10B), the state most
common among the terminal taxa is as-
sumed to be ancestral for that outgroup
(thus, the basal node of the outgroup in
Fig. 10B would be labelled “a”).

The predominant-states method has yet
to be justified by a direct parsimony ar-
gument, and in fact it can yield clado-
grams that are not globally parsimonious.
One might attempt to justify the method
with a probability argument (Arnold,
1981). For example, if 8 of 10 outgroups
have state a, most of the possible outgroup
resolutions will have state a as the most
parsimonious assignment to the outgroup
node. Thus one could suppose that a is
most probably most parsimonious. How-
ever, in Figure 14, the predominant-states
method uses character 31 to resolve (CDE)
into (C(DE)) which is not globally most
parsimonious (this example is discussed
further below). Our Rule 6 appears to make
similar claims, but in fact it makes much
weaker claims and is based strictly on par-
simony.

Instead of stepping outside of simple
parsimony, one could resolve a candidate
ingroup cladogram using each of the pos-
sible ancestral states and select those can-
didates that are most parsimonious accord-
ing to the outgroups, ingroup, or both. For
example, suppose that for one character
some of the alternative outgroup resolu-
tions yield the ancestral state assessment
“a,/” whereas others yield “b,” and for
another character some resolutions yield
“x"”" and others yield “y.” There are four
combmatlons that mlght be placed at the
ancestral outgroup node: a and x, or a and
y, or b and x, or b and y. Each of these
combinations represents a hypothetical
ancestor. Each of these four could be used
to resolve a candidate ingroup cladogram.
Their strict consensus cladogram, consist-
ing of just those clades common to all the
candidates (Sokal and Rohlf, 1981), could
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be used as the final ingroup cladogram.
However, because the consensus clado-
gram must agree with all four candidates,
it would probably be poorly resolved. Such
ambivalence is not necessary. Some hy-
pothetical ancestors may be preferred by
(i.e., may be more parsimonious according
to) the outgroups or ingroup. Hence, can-
didate ingroup cladograms yielded by
these hypothetical ancestors can be select-
ed, and a more resolved consensus might
result.

First, some of the hypothetical ancestors
may be preferred by the ingroup. For in-
stance, when a and x are placed at the out-
group node, the ingroup may be able to
arrange itself into a cladogram with fewer
steps than it can when b and y are placed
at the outgroup node.

Second, not all of these hypothetical
ancestors are actually supported by an out-
group resolution. Each outgroup resolu-
tion yields a combination of ancestral
states. For example, suppose there are only
two plausible resolutions, under one of
which the assessments are “a” and “x,”
under the other “b” and “y.” Some com-
binations, like “a” and “y,” are not ob-
tained under either of the outgroup reso-
lutions. Thus, although each of “a,” “b,”
“x,” and “y” are individually supported as
ancestral states by an outgroup resolution,
some of their combinations (i.e., some of
the hypothetical ancc.tors) are not sup-
ported by any of the resolutions. Ignoring
this preference for combinations could
cause one to choose a cladogram that is not
globally parsimonious. In Figure 14, the
hypothetical ancestor having “b” for each
of the characters 21-32 is allowed if the
outgroup’s preference for combinations is
ignored. Because the ingroup prefers this
combination of b’s, this hypothetical
ancestor could be chosen and (CDE) re-
solved to (C(DE)). But in fact, the out-
group dislikes this combination of b’s, be-
cause there is no outgroup resolution
under which b is a parsimonious estimate
of the ancestral state for each of the char-
acters 21-32. (C(DE)) is not globally most
parsimonious, because it was resolved us-
ing a hypothetical ancestor for which the

outgroup had a strong dislike. The out-
groups may be uninformative about each
character taken separately, but they can be
informative about preferred character
combinations.

Third, even among the ancestral state
combinations yielded by the various out-
group resolutions, some may be more par-
simonious than others according to the
outgroups. The alternative outgroup res-
olutions may have been proposed on the
basis of previous data but, on the basis of
the data at hand, some of these resolutions
of the outgroups may have poor parsi-
mony. Hence, the hypothetical ancestors
that they yield are not parsimonious ac-
cording to the outgroups.

Thus, among the many hypothetical
ancestors that may arise from the alterna-
tive outgroup resolutions, one might se-
lect those preferred by the outgroups, in-
group, or both. In selecting these ancestors,
one is also selecting the candidate ingroup
cladograms that they yield.

The outgroup substitution approach of
Donoghue and Cantino (1984) uses all and
only those ancestral state combinations
yielded by the alternative outgroup reso-
lutions (and thus it takes into account the
second preference, above). Under each al-
ternative outgroup resolution an ancestral
state combination (hypothetical ancestor)
is estimated, which is then used to resolve
a candidate ingroup cladogram. The strict
consensus cladogram of all the resulting
candidate cladograms is used as the in-
group cladogram, the rationale being that
the clades of this cladogram would be val-
id regardless of how the outgroups were
eventually resolved. It is a conservative
estimate in the face of uncertainty.

The consensus cladogram from this ap-
proach will not contradict the globally
most parsimonious cladograms. Because all
and only hypothetical ancestors actually
yielded by outgroup resolutions are used,
the globally most parsimonious ingroup
cladogram(s) must be among the candi-
dates resolved. Therefore, the consensus
of the candidates cannot contradict these
most parsimonious ingroup cladograms.
However, the consensus cladogram may
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be poorly resolved. In the example of Fig-
ure 14, the outgroup resolution (P(Q(RST)))
yields (C(DE)), whereas (((PQR)S)T) yields
((CD)E). Therefore, (CDE) is unresolved in
the consensus cladogram. The outgroup
substitution approach does not consider
the first and third preferences of the in-
group and outgroups, respectively.

If one fully considers the ingroup and
outgroup preferences, one can discard
more of the hypothetical ancestors, and so
possibly obtain a consensus cladogram
more resolved than obtained by the out-
group substitution approach. Indeed, in
some cases a single hypothetical ancestor
and thus a single fully resolved ingroup
cladogram can be chosen. For example, in
Figure 14 the hypothetical ancestor con-
sisting of b in characters 21-30 and a in
31 and 32, obtained from the outgroup res-
olution ((PQR)S)T), is much preferred by
the outgroup and only a little disliked by
the ingroup. This hypothetical ancestor
best balances the preferences of the in-
group and the outgroup. In selecting this
hypothetical ancestor, one also selects the
outgroup resolution that gave rise to it
(((PQR)S)T) and the ingroup cladogram
that it yields (AB)((CD)E). Together, they
are the most parsimonious simultaneous
resolution of the outgroup and ingroup.

The most parsimonious simultaneous
resolution is the combination of an in-
group resolution and an outgroup resolu-
tion which requires the fewest hypotheses
of convergence and reversal over the in-
group and outgroups together. This si-
multaneous resolution could be sought by
various methods. The technique described
above tried each alternative outgroup res-
olution, resolved the ingroup for each hy-
pothetical ancestor, and chose the hypo-
thetical ancestor (and hence the resolutions
of the outgroups and ingroup) that best
balanced parsimony in the outgroups and
ingroup. If an exhaustive examination of
hypothetical ancestors cannot be done, one
could attempt to find the most parsimo-
nious simultaneous resolution without the
aid of a computer, using reciprocal illu-
mination between the resolution of the
outgroups and the resolution of the in-

group. A resolution of the outgroups could
be attempted, ancestral states for the in-
group estimated, a resolution of the in-
group attempted, ancestral states for the
outgroups re-estimated based on the in-
group, and so on. For instance, in Figure
14 characters 1-20 support (AB)(CDE)
strongly enough not to be outvoted by the
other characters (Fig. 14A). Given this ar-
rangement, the ingroup has a strong pref-
erence for having b at the outgroup node
for characters 21-30. This partially re-
solves the outgroup to ((PQR)S)T). In turn,
this polarizes characters 31 and 32 so as to
yield ((CD)E). The ingroup and outgroups
can bargain back and forth about the states
at the ingroup and outgroup nodes, until
the best mutual compromise in the reso-
lutions of the outgroups and ingroup is
reached. In cases of character conflict the
bargaining could be complex and, if not
done thoroughly, the resulting resolu-
tions might not be globally parsimonious.
To seek the most parsimonious simulta-
neous resolution by computer, one could
include the outgroups and ingroup in a
computer analysis searching for unrooted
Wagner trees. The analysis could be con-
strained to maintain the ingroup mono-
phyletic and to maintain any prior as-
sumed structure among the outgroups,
perhaps by loading the data set with dum-
my variables which support this structure
(J. S. Farris, pers. comm.). Thus, the pro-
gram would resolve the ingroup, and re-
solve uncertainties among the outgroups,
but leave any assumed structure intact.

A two-step procedure that makes an ini-
tial commitment about the ancestral states,
then resolves the ingroup cladogram, is
sufficient when outgroups are well re-
solved, but not when they are poorly re-
solved. The initial commitment to ances-
tral states prevents bargaining back and
forth between the ingroup and outgroups.
When both the outgroups and ingroup
have freedom to be rearranged, they can
affect each other’s resolution. Hence, to
find the best mutual compromise, it is im-
portant not to make an initial ancestral
state commitment based on outgroups
alone. Instead, one should choose the out-
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group and ingroup resolution by measur-
ing parsimony over the outgroups and in-
group together, or by allowing the
outgroups and ingroup to bargain back and
forth.

In practical terms, is a procedure that
deals simultaneously with the outgroups
and ingroup feasible? The characters
whose ancestral state assessments are un-
certain initially are those that vary among
the outgroups, and thus are characters that
may indicate a resolution of outgroup re-
lationships. This suggests that simulta-
neous resolution could be performed when
needed. However, for performing simul-
taneous resolution it would be advisable
to use more extensive data sets than are
presently used. Suddenly, the ingroup and
outgroups have the same status and should
be treated with equal care. Characters that
vary among the outgroups should be used
even if they are invariant within the in-
group. Parallel observations on all char-
acters may be needed for each terminal
taxon within heterogeneous outgroups,
instead of scattered observations for each
character. Thus, to be thorough, one could
no longer be a specialist on just the “in-
group.” Given limited time and resources,
one might think that the simultaneous
resolution procedure would simply be im-
practical. But while it may be infeasible to
perform simultaneous resolution in a
thorough way, it is nevertheless best in
terms of parsimony to resolve the out-
groups as much as one can with the data
at hand, however scanty these data may
be. That is not to say that the simultaneous
resolution procedure will necessarily give
decisive or convincing results. If the data
for the outgroups are incomplete or full of
homoplasy, the simultaneous resolution
procedure may have little power with
which to resolve the outgroups, and the
ingroup cladogram may be fraught with
uncertainty. In such a circumstance one
may prefer the more conservative out-
group substitution approach (Donoghue
and Cantino, 1984). Otherwise, one could
gather more data and hope.

It is instructive to reconsider some of
the procedures described in this section as

variants of a constrained computer analy-
sis searching for Wagner trees (Farris, 1970)
in which the ingroup and outgroups are
included together. When the analysis is
constrained to hold the ingroup mono-
phyletic, but there is complete freedom for
rearrangement among the outgroups and
within the ingroup, we have a simulta-
neous resolution procedure with com-
pletely unresolved outgroup relation-
ships. When some but not all of the
outgroup relationships are constrained to
remain fixed, we have a simultaneous res-
olution procedure with partially resolved
outgroup relationships. When the analysis
is constrained to maintain fixed a fully
specified set of outgroup relationships,
then we have the one-step procedure for
fully resolved outgroup relationships (Fig.
12). This one-step procedure is equivalent
to the two-step procedure of Figure 2 (Ap-
pendix 3). The two-step procedure is more
efficient in that, after estimating the an-
cestral states by outgroup analysis, it dis-
penses with the outgroups and searches
for the restricted Wagner tree for the in-
group and the hypothetical ancestor.

At the beginning of a cladistic analysis
one is faced with a choice about how much
to constrain the analysis. Does one assume
a particular resolution for the outgroup re-
lationships, or does one treat some or all
of the outgroup relationships as initially
unresolved?

The monophyly of the ingroup and the
outgroup structure were discovered using
characters whose ancestral states were
presumably estimated by even more dis-
tant outgroups. Thus, all outgroup analy-
sis is a functional ingroup, functional out-
group procedure (Arnold, 1981; Watrous
and Wheeler, 1981). One could imagine
starting with all life, resolving a few major
groups, then proceeding stepwise to finer
and finer resolution. At each stage the
monophyly of the functional ingroup and
the interrelationships among the out-
groups are assumed to have been previ-
ously well demonstrated. Because charac-
ters are used sequentially instead of
simultaneously (Farris, 1982), errors may
result. The assumptions about outgroup
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structure made along the way are strong
assumptions, and early missteps can pre-
vent finding the ingroup cladogram that
is universally most parsimonious—over all
life (and nonlife). When we say that the
two-step cladistic analysis of Figure 2
yields “global” parsimony, we do not mean
parsimony “over all life”—in fact it only
gives parsimony over a larger local region
(outgroups plus ingroup) and even then
relies on assumed outgroup structure.

The use of the ontogenetic method to
determine ancestral states does not nec-
essarily avoid this stepwise approach. Nel-
son (1978) has suggested that the ontoge-
netic method is a foundation upon which
outgroup analysis rests, since it avoids
these assumptions of higher-level phylog-
eny. As we suggest in the next section, the
use of ontogeny alone may be best thought
of (from our parsimony perspective) as an
appeal to inanimate nature as an out-
group, and thus one is simply starting
anew at the highest level of the stepwise
resolution.

J. S. Farris (pers. comm.) and D. L. Swof-
ford (pers. comm.) have both suggested a
procedure wherein the ingroup mono-
phyly and the outgroup structure are not
simply assumed. In this procedure, an at-
tempt is made to include the data that were
thought to have supported ingroup mon-
ophyly and outgroup structure, and then
to give the groups complete freedom in
the analysis. If the analysis results in a
cladogram which holds the ingroup to-
gether, so be it, but if characters such as
those in Figures 2 and 5 break up the in-
group, take what the data suggest. This is
a simultaneous resolution procedure tak-
en to the extreme, with most or all restric-
tions on monophyly loosened.

SIMPLE PARSIMONY

Most of this paper is based on “simple
parsimony”’; that is, the estimation of an-
cestral states and the choice of cladograms
has depended only on the number of char-
acter state changes required, counting re-
versals and convergences equally. There
are two things that simple parsimony does
not do: (1) although it can choose among

competing hypotheses, sometimes it fails
to specify the confidence with which the
choice can be made; and (2) it does not
assume that loss of a character state is eas-
ier than gain, or gain easier than loss.

Parsimony works on the available infor-
mation, however little. Even when infor-
mation is available only from a seemingly
distant outgroup (e.g., dandelions used as
the outgroup for the Felidae), parsimony
can still yield a decision. Nelson (1973)
suggested that it is more parsimonious to
assume that a transforming ontogeny in
which state x transforms to y is advanced
and a nontransforming ontogeny in which
X remains x is primitive. This argument
seems to be based on the supposition that
the world began without transforming on-
togenies and that they had to be derived
during the course of evolution. Hence, the
argument appears to use inanimate nature
as an outgroup. Inanimate nature is a very
distant outgroup. Nevertheless, when one
has only this much information, and until
one looks to closer outgroups, the argu-
ment is valid in terms of parsimony.

However, even when parsimony sup-
ports a particular ancestral state assess-
ment, the support may not be convincing
(Farris, 1983:14). More work is needed to
explore how much confidence can be
placed in the hypotheses that parsimony
prefers. One might, for example, have lit-
tle confidence in a hypothesis because only
scanty information supports it, or because
the characters seem unreliable.

Why should one have more confidence
in a hypothesis based on more informa-
tion? Perhaps the answer concerns robust-
ness. Distant outgroups can provide a de-
cision based on parsimony, but outgroups
closer to the ingroup have the power to
overrule them (see Rules 1 and 3 above).
Thus, the ancestral state assessment is more
robust the closer and more comprehensive
the outgroups, for the estimated ancestral
states are more likely to remain most par-
simonious even as more knowledge of
outgroups is gathered. A similar argument
might apply to attempts to simultaneously
resolve the ingroup and outgroups when
data on the outgroups are scanty. Al-
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though parsimony can supply a decision
whether data are plentiful or not, the more
data available for the outgroups and in-
group, the less the simultaneous resolu-
tion might be expected to change as more
data are added. When information is avail-
able from only scattered outgroups, some
of which may be distantly related to the
outgroup, the simultaneous resolution
could be unstable. Donoghue and Cantino
(1984) preferred the more conservative
ingroup substitution approach in such a
situation. However, our arguments do not
directly answer the question of confi-
dence, since robustness measures resis-
tance to further change as opposed to
closeness to truth. We are left uncertain
about how to measure the amount of con-
fidence that can be placed in hypotheses
based on different amounts of informa-
tion.

Some systematists have said to us that
they would hesitate to use characters that
show as much homoplasy as those in Fig-
ures 2 and 5. This response suggests a be-
lief in constancy of rate: If a character
shows many changes in the outgroup por-
tion of the cladogram, it will be equally
labile in the ingroup portion and, hence,
the character cannot be used with confi-
dence to resolve the ingroup. This belief
may be valid, but it goes beyond simple
parsimony. Simple parsimony does not in-
dicate whether such homoplasious char-
acters should be used with less confi-
dence. Simple parsimony merely finds the
most parsimonious ancestral state assign-
ment, whether the character has much ho-
moplasy or not.

Our algorithms, rules, and global par-
simony results hold when characters are
given different weights, but not when as-
sumptions such as irreversibility are made.
If some characters are considered of great-
er overall weight than others, the out-
group algorithm and rules are not affected
because they treat each character separate-
ly. The results discussed under “Global
Parsimony”” are also unaffected (Appendix
3). However, if some character state
changes within a character are given
greater weight than others, our results may

not hold. The multistate ordered charac-
ters and character state trees weight some
character state changes more than others
(for example, a change from state 1 to state
2 is one step, whereas from 1 to 4 is three
steps), but our results accommodate this.
Assumptions that loss is easier than gain
or vice versa, or that evolution is irrevers-
ible, can render our results invalid. Some
of these assumptions may be justifiable by
broader parsimony considerations. The use
of these assumptions may ensure that cla-
distic hypotheses remain parsimonious
when we consider not only the data at
hand, but also theories about the evolu-
tionary process corroborated by studies
with other character systems or organisms
(see Wiley, 1975; Farris, 1983).

One might say the simple parsimony
approach has a purity of logic uncluttered
by assumptions about evolutionary pro-
cess. Alternately, one could say it is just a
beginning, a framework upon which a
more organic approach could be built. It
is not our intent to argue for or against
the exclusive use of simple parsimony—
we are only exploring the consequences
of such a view. Regardless of whether this
view is generally adopted, application of
simple parsimony can expose assumptions
of irreversibility, weighting, and so on, so
that if these assumptions are employed,
they will be open to discussion.
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APPENDIX 1

Outgroup Algorithms for
Multistate Characters

The following algorithms find all and only the state
assignments to the outgroup node that minimize
convergence and reversal in the outgroup portion of
the cladogram. The binary algorithm presented in
the text is a special case of each of the multistate
algorithms.

Step 1 is the same as in the binary algorithm. We
assume that outgroup relationships are fully re-
solved. When a terminal taxon has more than one
state, there are two possible procedures (see discus-
sion in text under step 1 of the binary algorithm).
First, one could treat the terminal taxon’s internal
cladistic structure as unresolvable, in which case la-
bel the terminal taxon by the set (for unordered char-
acters), by the smallest range (for ordered characters),
or by the smallest subtree (for character state trees)
containing the states of the taxon. Second, one could
treat the taxon’s cladistic structure as resolvable, in
which case treat the problem as one of unresolved
outgroup relationships.

Multistate unordered characters.—The character states
are unordered; that is, one step is counted between
any two states. One may prefer to treat characters as
unordered if no particular assumption about order is
well supported before the cladistic analysis (Gaffney,
1979). For example, changes in the DNA nucleotides
from A to C, C to U, G to A, and so on, could each
be counted as one step (Fitch, 1971).

This algorithm is a modification of the preliminary
phase of Fitch’s (1971) algorithm. The labels to the
nodes are sets containing one or more character states.
Step 2 of the outgroup algorithm for multistate unor-
dered characters is: Label a node by the intersection
of the label sets of the two nodes immediately farther
from the outgroup node if the sets intersect. Other-
wise label the node by the union of the two label sets.
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Suppose this: is the character state
tree.
Then this: R and this:

yield this: >——(

FiG. 15. Application of step 2 of the outgroup al-
gorithm for character state trees. Upper row, the
character state tree. The two label subtrees (heavy
lines) in the middle row yield the subtree in the bot-
tom row.

(Thus, {a,b,d} and {b,c,d} yield {b,d}; {a,b} and {e}
yield {a,b,e}.)

Multistate ordered characters.—The character states
are ordered in a linear sequence; that is, the number
of steps between ci and cj plus the number of steps
between c¢j and ck is equal to the number of steps
between ci and ck (for any states ci, ¢j, and ck, i <
j < k). The states can be discrete or continuous. If the
outgroup node assessment is [3,6], for example, then
states 3, 6, and any states between them are equally
parsimonious assignments to the outgroup node.

This algorithm is a modification of the first pass
(steps R-1 and R-2) of Farris’s (1970) algorithm. The
labels to the nodes are ranges of character states. Step
2 of the outgroup algorithm for multistate ordered
characters is: Label a node by the intersection of the
label ranges of the two nodes immediately farther
from the outgroup node if the ranges intersect (Far-
ris’s R-1). Otherwise label a node by the range be-
tween the ranges of the two nodes, including the end
points (Farris’s R-2). (Thus, [3,8] and [4,9] yield [4,8];
[2,5] and [7,8] yield [5,7].)

Character state trees.—The character states are ar-
ranged into a character state tree. The number of steps
between any two states is the distance between them
along this tree. The tree is unrooted (and thus per-
haps more appropriately called a network); reversals
are allowed.

This is a generalization of the algorithm for mul-
tistate ordered characters. The labels to the nodes are
convex pieces or “subtrees” (heavy lines in Fig. 15)
of the character state tree. The outgroup node assess-
ment will be the label subtree given to the outgroup
node; any of the states in this subtree are equally
parsimonious assignments to the outgroup node. Step
2 of the outgroup algorithm for character state trees
is: Label a node by the intersection of the label sub-
trees of the two nodes immediately farther from the
outgroup node if the subtrees intersect. If they do
not intersect, label the node by the shortest (i.e., the
linear) path between the two label subtrees. For in-
stance, in Figure 15, the label subtree on the bottom

row results from the intersection of the two label
subtrees on the middle row.

APPENDIX 2
An Outline of a Proof of the Algorithms

A sketch of the proof of the algorithms is given
here. It follows the same basic pattern for the binary
and the three multistate cases. Hartigan (1973) pre-
sented proofs which justify the algorithm for multi-
state unordered characters. Farris (1970) presented no
proof, but Swofford and Maddison (unpubl. manu-
script) have developed proofs which justify the al-
gorithm for multistate ordered characters. A more
complete proof of the algorithm for character state
trees can be obtained from the senior author (WPM).

To make the proof easier we presume that the in-
group has been removed and the outgroup portion
rerooted at the outgroup node. Also, we will treat
this rerooted outgroup portion mathematically as a
cladogram even though it is not necessarily meant to
represent phylogeny (having been rerooted). Once it
is proved that the outgroup algorithm finds the as-
signments to the outgroup node in its new position
as root that are most parsimonious according to the
outgroups, it follows that these are also the most par-
simonious when it is in its original position (see Far-
ris, 1970:85).

Define the subcladogram of an internal node 7 to be
the clade which has 7 at its base. The internal nodes
and hence the cladistic relationships within the clade
are included in the subcladogram. Define a decoration
of a subcladogram to be a set of assignments to nodes,
one state to each of the subcladogram’s nodes. A most
parsimonious decoration of a subcladogram is a dec-
oration which has a minimal number of steps as mea-
sured locally, within the subcladogram only.

The following proposition (compare Hartigan’s
Theorem 2, 1973) can be proved by mathematical in-
duction, proceeding down the cladogram from the
terminal taxa towards the root: (a) If a node # is as-
signed any state in the label set given it by the out-
group algorithm, its subcladogram can be most par-
simoniously decorated (i.e., there is a most
parsimonious decoration of its subcladogram with n
assigned this state). (b) If a node 7 is assigned any
state outside of its label set, then its subcladogram
cannot be most parsimoniously decorated and any
decoration of its subcladogram will be longer than
minimal by at least the distance between the state
chosen and the nearest state in n’s label set (for unor-
dered characters this distance will be one step; for
ordered and tree characters this distance may be dif-
ferent from one). When  is the root, the proposition
guarantees that the cladogram (or, in the case of out-
group analysis, the outgroup portion) can be most
parsimoniously decorated if and only if its root is
assigned one of the states in its label set.

APPENDIX 3
Proof of the Global Parsimony Result

One needs to show that the following two proce-
dures—the two-step and one-step procedures—choose



1984

OUTGROUP ANALYSIS

103

all and only the same ingroup cladograms when out-
group relationships are well resolved beforehand. For
the two-step procedure (Fig. 2), parsimony is initially
measured locally among the outgroups to estimate
the state at the outgroup node for each character,
then the most parsimonious ingroup cladograms are
chosen, where parsimony is measured (over all char-
acters) locally within the ingroup but given the es-
timated ancestral states at the outgroup node. For the
one-step procedure (Fig. 12), the most parsimonious
ingroup cladograms are chosen where parsimony is
measured (over all characters) globally, over the in-
group plus outgroups together. By showing the
equivalence of these two procedures we show that
the two-step procedure achieves global parsimony,
because the one-step procedure is guaranteed to find
the globally most parsimonious cladograms, by def-
inition.

One has a candidate K for an ingroup cladogram.
The following definitions apply: whole cladogram,
the candidate ingroup cladogram K with the out-
groups attached; outgroup portion, the outgroup node
and the outgroups; ingroup portion, the candidate K,
the outgroup node, and the outgroup node-ingroup
node internode. We assume for the moment that one
is considering only one character C with states c1,
¢2, and so on (C can be binary or one of the three
sorts of multistate characters in Appendix 1).

In the one-step procedure, in order to evaluate K’s
parsimony one finds any most parsimonious deco-
ration (Appendix 2) of the whole cladogram for char-
acter C, and counts how many steps the decoration
has. One of these most parsimonious decorations of
the whole cladogram has at the outgroup node one
of the states that would have been an ancestral state
estimate from outgroup analysis, had the two-step
procedure been followed. A most parsimonious dec-
oration of the whole cladogram can be found by ap-
plying the algorithm of Farris (1970) or Fitch (1971)
after the whole cladogram has been rerooted on the
outgroup node-ingroup node internode (call the new
root R). (The rerooting affects neither number of steps
nor the most parsimonious decorations.) On the first
pass of these algorithms down the cladogram (R-1
and R-2 of Farris’s; the preliminary phase of Fitch’s),
the outgroup node will be labelled just as it would
be by outgroup analysis, because the outgroup al-
gorithms and the first pass are equivalent in form.
(When we refer to labels in this proof, we mean the
labels applied to the nodes on this first pass.) At least
one of the states in the outgroup node’s label (call
this state cp) will be included in the label given to R
(see step 2 of the algorithms). Because R is the root,
each of the states in R’s label (cp included) is a most
parsimonious assignment to R according to the whole
cladogram (Appendix 2). Because cp is both in the
outgroup node’s label and a most parsimonious as-
signment to R, there exists a most parsimonious dec-
oration to the whole cladogram which has cp at the
outgroup node. Call this decoration “W(K,C).” The
number of steps in the outgroup portion of W(K,C)
will be minimal, because cp is part of the outgroup
node’s label set (see proposition, Appendix 2).

In the two-step approach, the parsimony of K is
measured locally within the ingroup portion given
the estimated ancestral states. When more than one
ancestral state was allowed by outgroup analysis (i.e.,
the assessment was equivocal), one uses the ancestral
state that allows the ingroup to be most parsimoni-
ously decorated. Thus, one finds a most parsimonious
decoration of the ingroup portion using each esti-
mated ancestral state, counts the number of steps,
and chooses a decoration with the smallest number
of steps. Suppose that the ingroup portion decoration
chosen (call it I(K,C)) has ¢q (which may or may not
be the same as cp) at the outgroup node.

I(K,C) must have the same number of steps as are
in the ingroup portion of W(K,C). The number of
steps in I(K,C) cannot be more than the number of
steps in the ingroup portion of W(K,C), because cp
is an available choice from outgroup analysis and
would have been chosen instead of cq to make the
ingroup portion decoration. The number of steps in
I(K,C) cannot be less than the number in the ingroup
portion of W(K,C), since this would imply there is a
decoration to the whole cladogram (with cq at the
outgroup node) which has fewer steps than W(K,C).

Similarly, for any other candidate ingroup clado-
gram L there exists a most parsimonious decoration
(call it W(L,C)) of the whole cladogram which places
an ancestral state estimate from outgroup analysis at
the outgroup node. The outgroup portion of W(L,C)
therefore has a minimal number of steps. Because
W(K,C) also has a minimal number of steps in the
outgroup portion, W(L,C) and W(K,C) differ in num-
ber of steps only in the ingroup portion. I(L,C) has
the same number of steps as in the ingroup portion
of W(L,C), just as I(K,C) has the same number as in
the ingroup portion of W(K,C). Hence,

#W(K,C) — #W(L,C) = #I(K,C) — #I(L,C) (1)

(where # is read “the number of steps in”). This holds
for any character C, whether binary or one of the
three sorts of multistate characters described in Ap-
pendix 1, and whether C is weighted differently from
the other characters. The one-step procedure mea-
sures the parsimony of candidate K by the sum over
all characters C of #W(K,C), whereas the two-step
procedure measures the parsimony of K by the sum
over all characters C of #I(K,C). Therefore,

> #HW(KC) — ) #W(L,C)
= X [#W(K,C) — #W(L,O)] @
= >} [#1(K,C) — #1(L,C)]

= #I(K,C) — > #I(L,C).

Therefore, the one-step and two-step procedures will
always agree about whether K or L is more parsi-
monious. Hence, they will choose the same ingroup
cladograms.



