PHYLOGENETIC RELATIONSHIPS IN THE HAMAMELIDOIDEAE
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Abstract. Two non-coding regions of chloroplast DNA were used to examine phylogenetic relationships in the
Hamamelidoideae (Hamamelidaceae). Sequences of rraL-irnF intergenic spacer and tril. intron were informa-
tive in resolving relationships among genera and at higher levels. Three major lineages are identified: the
Corvlopsis lineage, the Trichocladus lincage. and the Hamamelis lineage. Corylopsideae, Hamamelideae, and
Dicoryphinae are found to be monophyletic: Loropetalinae and Eustigmateae appear to be paraphyletic, and
Hamamelideae and Fothergilleae 1o be polyphyletic. These results are consistent with previous analyses based
on nrtDNA ITS sequences and the cpDNA marK gene. Morphological characters, such as apetaly, strap-shaped
petal. and wind pollination, which have been used to define supragenenic groups, evolved independently in the

three lineages.
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The Hamamelidaceae are a family of 31 gen-
era and more than 140 species distributed in
both the Old and New World (Zhang and Lu,
1995). Many species are economically impor-
tant. Liquidambar styraciflua L. (sweetgum),
for example, is known for producing the aro-
matic storax, which has been used in soaps,
cosmetics, and so on. Extracts from bark and
leaves of Hamamelis virginiana L. (witch-
hazel) are used in skin cosmetics, shaving
lotions, and ointments (Mever, 1997). Other
species are cultivated world-wide as ornamen-
tals, including Corylopsis Sieb. & Zucc (winter-
hazel) and Fothergilla Murray (witch-alder).
Systematically, the Hamamelidaceae are said to
be “transitional” either between the “lower”
Hamamelidae and the “higher” Hamamelidae
(Endress, 1967) or between the “lower”
Hamamelidae and Rosidae (Hufford, 1992). In
any case, it is clear that this group of plants
occupies an important position in the evolution
of eudicots.

The Hamamelidaceae comprise four
(Endress, 1989c), five (Harms, 1930), or six
subfamilies (Chang, 1979; Li, 1997), among
which the Hamamelidoideae are the largest.

This subfamily includes over 75% of the genera
(23 out of 31) and about 90% of the species in
the Hamamelidaceae. The distribution of the
Hamamelidoideae ranges from eastern and
southern Africa, Madagascar and the Comoro
Islands, to northeastern Australia, and from
western, central, and southeastern Asia, to
Northern and Central America (Endress, 1989a,
b. c: Li, 1997; Zhang and Lu, 1995).

The monophyly of the Hamamelidoideae has
been recognized on the basis of morphology
(Hufford and Crane, 1989; Li, 1997), and
sequences of nrDNA ITS (Shi et al., 1998; Li et
al., in press, a) and chloroplast genes (rbcL,
Qiu et al., 1998; marK, Li et al., in press, b).
However, the intergeneric relationships and
classification of the Hamamelidoideac have
been controversial. The first comprehensive
taxonomic treatment of the Hamamelidoideae
in this century was proposed by Harms (1930).
He recognized five tribes and 17 genera in the
subfamily (Table 1). The Corylopsideae, char-
acterized by leaf morphology (basal crowding
of secondary veins and terminal veins ending in
teeth). included Corylopsis Sieb. & Zucc. and
Fortunearia Rehd. & Wils. The Eustigmateae
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was monotypic, and easily distinguished by
purple, enlarged stigmatic surface. The
Distylieae included genera that were andromo-
noecious and mostly had persistent leaves,
including Distylium Sieb. & Zucc., Sycopsis
Oliv., and Sinowilsonia Hemsl., whereas the
Fothergilleae was a tribe of three genera,
Parrotia C. A. Mey., Fothergilla Murray, and
Parrotiopsis Schneider, and was defined by fea-
tures such as bisexual flowers and deciduous
leaves. The Hamamelideae, characterized by
ribbon-shaped petals, was the largest tribe in
the Hamamelidoideae and included Hamamelis
L.. Dicoryphe Thouars, Trichocladus Pers.,
Embolanthera  Merr., Maingava  Oliv.,
Loropetalum R. Br. ex Rchb., and Terrathyrium
Benth. Harms was uncertain about the tribal
aftiliation of Ostrearia Baill.

Additional genera of the Hamamelidoideae
have been described since Harms (1930),
including Neostrearia Smith (Smith, 1958).
Noahdendron Endress, Hyland & Tracey
(Endress et al., 1985). Matudaea Lundell
(Lundell, 1940), Shaniodendron Deng, Wei &
Wang (Deng et al., 1992), Distvliopsis Endress
(Endress, 1970), and Molinadendron Endress
(Endress, 1969). The latter three genera are
segregates from Hamamelis, Svcopsis, and
Distylium, respectively.

Endress (1989c) revised the Hamameli-
doideae. combining the Distylicae and
Fothergilleae based mainly on the discovery of
a spontaneous hybrid between Syvcopsis of the
Distylieae and Parrotia of the Fothergilleae
(Table 1). Within the Hamamelideae, Endress
recognized three subtribes: 1) the Dicoryphinae
(Dicoryphe, Trichocladus, Ostrearia, Neostrearia,
Noahdendron), found exclusively in the
Southern Hemisphere and characterized by a
distinct anther dehiscence pattern, 2) the mono-
typic Hamamelidinae (Hamamelis), defined by
its strictly 4-merous flowers, and 3) the
Loropetalinae (Loropetalum, Embolanthera.
Tetrathyrium, and Maingaya), characterized by
a combination of pentamerous flowers and a
two-valvate anther dehiscence pattern. Other
features of Endress’s classification system are
the placement of Fortunearia and Sinowilsonia
in the Eustigmateae, based on their reduced
petals and lenticellate fruits, and treatment of
Corylopsideae as monogeneric (Corylopsis),
mainly based on the distinct orbicular petals.

In the past several years the phylogenetic
relationships of the Hamamelidaceae have been
examined using nucleotide sequence variation
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in the nrDNA ITS and in the plastid gene marK
(Li, 1997; Li et al., 1997; Li et al., 1998a,
1998b; Shi et al., 1998). These data have sup-
ported some proposed phylogenetic relation-
ships within the family, but not others, and have
suggested some novel phylogenetic and bio-
geographic connections, particularly within the
subfamily Hamamelidoideae. Li (1997) recog-
nized six tribes in Hamamelidoideae, two of
which, Corylopsideae and Hamamelideae, are
monogeneric (Table 1). The circumscription of
the Eustigmateae was expanded 1o include
Molinadendron and the Loropetalinaec to
include Matudaea, removing both Molinaden-
dron and Matudaea from the Fothergilleae. The
Hamamelideae, whose members fall into three
separate lineages, were seen to be polyphyletic
(Li et al., in press, a, b; Shi et al., 1998).

Since the primers were published for three
non-coding regions in the single-copy region of
chloroplast DNA (Taberlet et al., 1991), several
phylogenetic studies have examined DNA
sequences of these regions and concluded that
they are informative at lower taxonomic levels
(among and within genera, and even within
species), e.g.. Fujii et al. (1997), Gielly and
Taberlet (1996), and Kita et al. (1995). We had
hoped to use this region to resolve interspecific
relationships in several genera in the Hamameli-
doideae, e.g. Hamamelis. However, sequences
differed too little within genera to provide sig-
nificant resolution (Li et al., 1998c¢). Instead, as
we report here, we found that sequences from
two non-coding regions of cpDNA were useful
in resolving broader relationships within
Hamamelidoideae.

MATERIALS AND METHODS

Twenty three species were sampled for this
study. representing 22 (out of 23) genera, and
all tribes and subtribes of the Hamamelidoideae
in previous classification systems (Harms,
1930; Endress, 1989c: Li, 1997). Disanthus
Maxim., Exbucklandia B. W. Br., and
Rhodoleia Champ. were chosen as outgroups
since previous studies have suggested that these
are closely related to Hamamelidoideae (Li,
1997; Shi et al., 1998). Sources of material and
GenBank accession numbers of the sequences
are given in Table 2.

DNA extraction was carried out as described
in Li et al. (1997). The polymerase chain reac-
tion (PCR) was performed using the primer
pairs ¢ and f of Taberlet et al. (1991) in a Perkin
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Elmer thermocycler. Each 50pl reaction
included 50-100ng genomic DNA, Sul of 10 X
PCR buffer (GibcolBRL, Grand Island, NY),
3pl of 25 uM MgCI2, 1ul of 10uM primers, and
I1-1.5 units of Taq polymerase (Gibcol BRL),
and an appropriate amount of distilled water.
The PCR thermocycler program consisted of
35 cycles of denaturation at 94°C (2 min),
annealing at 55°C (1 min), and extension at
720C (2 min), followed by a 7 min extension at
720C. The PCR products, identified by compar-
ison with the low mass DNA size marker
(Gibcol BRL), were purified in a 0.8% agarose
gel, and were then extracted using a Qiagen gel
extraction kit (Qiagen Inc., Santa Clarita, CA ).
Purified PCR product was used directly as a
template for sequencing reactions using a cycle
sequencing kit (Amersham Co., Arlington
Heights, IL) and primers ¢, d, e, and f of
Taberlet et al. (1991). The sequences were
obtained wusing an ABI 377 Automated
Sequencer and analyzed using Sequencher 3.0
(Gene Codes Corp., Inc., Ann Arbor, MI). All
sequences were readily aligned manually.
Intron/exon junctions were determined by com-
parison with corresponding DNA sequences of
Nicotiana tabacum (GenBank Z00044),
Parsimony analyses were conducted with
gaps as missing data and as a fifth character
state using the computer program PAUP 3.1.1
(Swofford, 1993). Heuristic searches were con-
ducted using simple sequence addition, TBR
branch swapping, and Mulpars on. Characters
states were unordered and characters and state
changes were equally weighted. Relative sup-
port for individual clades was examined using
the bootstrap (100 replicates, Felsenstein,
1985) and decay analysis (up to five steps,
Bremer, 1988: Donoghue et al., 1992).

RESULTS

Sequence Characteristics

We have successfully amplified a region of
about 1000 base pairs using the primers ¢ and f
of Taberlet et al. (1991), including part of the
trnl. 5' exon. rrall intron, rrnl 3' exon. the
intergenic spacer of trnL and trnF, and part of
the trnF 5" exon.

The alignment of these sequences, including
the trmL intron, trnL-trnF intergenic spacer,
trnl. 3' exon, and partial #nF gene, yielded a
data matrix of 1025 characters, of which 61
were potentially informative. The data matrix is
available from the first author upon request and
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from TreeBASE (accession # M546: http:/
phylogeny.harvard.edu/treebase).

The length of the rraL intron varied from 512
bases in Tetrathyrium to 524 in Shaniodendron
in the Hamamelidoideae, and from 360-364
bases in the outgroups Exbucklandia, Disanthus,
and Rhodoleia (Table 3). The alignment of the
intron required 19 indels (1-16 bases in length)
and produced a data matrix of 550 characters,
of which 30 sites were potentially informative.
Sequence divergence among the ingroup gen-
era was 0-3.1%. with an average of 1.6%, and
the divergence between the in- and outgroups
averaged 3.9% (Table 3). The nmL 3’ exon
ranged from 45 to 51 bases in length. The
alignment required four indels, one four bases
and the rest of a single base, and produced 51
characters: two of the 11 variable characters
were potentially informative. The intergenic
trnL-trnF spacer varied from 371 to 381 base
pairs and the alignment resulted in 388 sites, of
which 89 were variable and 29 were potentially
informative. The trnL-trnF spacer diverged
from 0-4.9% in the Hamamelidoideae with an
average of 2.5%. and from 3.96-7.6% between
the in- and outgroup taxa, with an average
of 5.9%.

Phylogenetic Relationships

Separate parsimony analyses of individual
data sets of rrnL intron, trmL-rrnF intergenic
spacer, trnL. 3" exon, and trnF 5" exon sequences
produced phylogenies that were congruent with
one another, but with different degrees of reso-
lution. The two exons had little resolution; trees
based on the trnl intron and the rml-trnF
intergenic spacer are shown in Fig. I. These
trees have much in common, and show no
strong conflicts: therefore, combination of data
seems warranted. Parsimony analysis of the
combined data set of 1025 characters, treating
gaps as missing, resulted in 26 equally short
trees of 205 steps and a consistency index of
0.88. Figure 2 shows the strict consensus tree,
which we refer to as the GM tree. Three major
clades are apparent in the GM tree: the
Corylopsis clade (C), the Hamamelis clade (H),
and the Trichocladus clade (T). The C and H
clades are strongly supported (bootstrap >98%,
decay >3), whereas suport for the T clade is
weak (bootstrap = 73%, decay = 1). In the C
clade, Corvlopsis is sister to the clade composed
of Matudaea, Maingava, Loropetalum, and
Tetrathyrivm; and the latter two form a clade.
The H clade contains three groups whose rela-
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tions are unresolved: Hamamelis, Fothergilla,
and the rest of the genera in the Fothergilleae
sensu Endress (1989b, ¢). Parrotiopsis is sister
to the branch containing Parrotia and a poly-
tomy of DistvliumR, Shaniodendron, and a
DistyliumM-Distvliopsis-Sycopsis clade. The T
clade contains three main lines: Dicorvphe.
other members of the Dicoryphinae sensu
Endress (1989¢), and the Eustigmateae sensu
Endress (1989¢) plus Molinadendron.

A parsimony analysis treating gaps as a fifth
character state generated eight shortest trees of
394 steps and a consistency index of 0.79.
Fig. 3 is the strict consensus tree, which we will
call the G5 tree. The G35 tree is largely congru-
ent with the GM tree, differing only in the fol-
lowing ways: (1) the C clade is sister to the
branch containing the H and T clades; (2)
within the C clade there is a trichotomy involv-
ing Corvlopsis, Maingava-Matudaea, and
Loropetalum-Tetrathyrium; and (3) the T clade
contains two well resolved branches, one of
which includes FEustigma-Fortunearia and
Sinowtisonia-Molinadendron, and the other
consisting of the Southern Hemisphere genera,
with Dicoryphe sister to the rest (Fig. 3).

DiscussioN

Sequence variation

The three non-coding regions of the chloro-
plast genome were suggested to be potentially
informative in resolving phylogenetic relation-
ships at different levels (Taberlet et al., 1991).
Several studies using these sequences have
shown that the intergenic spacer between trnl-
trnF and the trnl intron are informative in
resolving relationships among species, or even
within species (Fujii et al., 1997; Gielly and
Taberlet, 1996; Kita et al., 1995). In contrast,
Kamiya et al. (1998) concluded that these
regions were not informative at the interspe-
cific level in the Dipterocarpaceae . Our study
agrees with Kamiva et al., and further suggests
that these sequences are not divergent enough
to resolve relationships among closely related
genera such as Ostrearia, Noahdendron, and
Neostrearia (Fig. 1). It has been observed that
herbaceous plants tend to have higher variation
than woody plants, possibly due to shorter gen-
eration times in the former (Gaut et al., 1992).
Given that previous studies (Fujii et al., 1997;
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Gielly and Taberlet, 1996; Kita et al., 1995)
were mainly focused on herbaceous plants, this
study (together with Kamiya et al., 1998) tends
to support that generalization. Between the
non-coding segments, the sequence variation
was slightly higher in the rnL-F intergenic
spacer than in the rraL intron, with percentages
of informative sites being 7.5% and 5.4%
respectively. We found only one potentially
informative site in the 5" end of trnF and two in
the trul. 3' exon.

Phyvlogeny and Classification

Three major clades are seen in both the GM
and G5 trees (Fig. 2, 3): (1) the Corvlopsis
clade (C). (2) the Hamamelis clade (H), and (3)
the Trichocladus clade (T). These three clades
correspond perfectly with those recovered in
phylogenetic analyses based on sequences of
nrDNA ITS and the cpDNA marK gene (Li et
al., in press, a. b). However, in the GM tree
(Fig. 2), the T clade is basal and C and H are
united, whereas in the G5 tree (Fig. 3), C is
basal and H and T form a clade. The sister rela-
tionship of the C and H clades is only weakly
supported in the GM tree (bootstrap = 67%;:
decay = 1), while the H-T clade is strongly sup-
ported in the G35 tree (bootstrap = 98%; decay
= 6). Nine out of the 11 apomorphies support-
ing the H-T clade are indels. The G5 topology
is congruent with trees based on ITS sequences
(Lietal., 1998b: Li et al., in press, a: Shi et al.,
1998) and cpDNA marK (Li, 1997), on this
basis we prefer the G5 tree. with the C clade
basal in the Hamamelidoideae,

Corvlopsideae

The circumscription of Corylopsideae has
been controversial. It contains Corylopsis and
Fortunearia (Harms, 1930), or Corylopsis,
Fortunearia, and Sinowilsonia (Shulze-Menz,
1964), or just the genus Corvlopsis (Endress,
1989¢). Our analysis suggests that Corylopsis
is not closely related to Fortunearia or
Sinowilsonia, supporting Endress’s delimita-
tion. Floral ontogeny and embryological stud-
ies have also shown that Corviopsis is distinct
from Fortunearia and Sinowifsonia (Li and
Bogle, 1998). Further, both ITS and marK
sequences support this conclusion (Li, 1997; Li
et al,, 1998b; Shi et al., 1998).
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Hamamelideae

[n Harms’s system (1930), Hamamelideae,
characterized by strap-shaped petals, is the
most diverse tribe, including Hamamelis,
Trichocladus, Maingava, Embolanthera,
Tetrathyrium, Loropetalum, Dicoryphe. and the
three Australian genera. Endress (1989¢) did
not change the circumscription of the tribe. but
he subdivided it into three subtribes: the mono-
generic Hamamelidinae, the Dicoryphinae, and
the Loropetalinac. However, in our trees (HL.
HD, and HH in Figs. 2, 3), these three groups
do not form a single clade, but three separate
groups, indicating that the Hamamelideae are
polyphyletic. Hamamelis is shown to be the sis-
ter of Fothergilleae. The Loropetalinae, charac-
terized by the horn-like projections of anther
connective, are related to Coryilopsis and
Matudaea. Loropetalum is a genus of one to
several species distributed in southeastern Asia
and has the smallest leaves in the subfamily. It
is very similar to Tetrathyrium, a monotypic
genus endemic to Hong Kong (Chang. 1979),
and it has been suggested that the two genera
should be merged (Endress, 1993: De-yuan
Hong, pers. com.). Our results are consistent
with this position,

The close relationship of the Southern
Hemisphere genera, which share a characteris-
tic valvate anther dehiscence pattern, was
pointed out by Endress (1989a, b), who treated
these genera as subtribe Dicoryphinae. In the
GM tree (Fig. 2), the Australian genera were in
one clade, while their relationships with the
southeastern African Trichocladus, and the
Madagascan Dicoryphe were not well resolved.
In the G5 tree (Fig. 3) these five genera form a
well-supported clade.

Eustigmateae

The Eustigmateae was considered mono-
generic by Harms (1930). Shulze-Menz (1964)
transferred Sinowilsonia from the Distylieae to
the Eustigmateae, and Endress (1989c¢) trans-
ferred Fortunearia from the Corylopsideae
based on several morphological characteristics,
including lenticels on fruits and enclosing
sepals. In our trees (Figs. 2. 3). Eustigma,
Fortunearia, and Sinowilsonia form a well-sup-
ported clade along with Molinadendron, a
Central American genus segregated from
Distylium and included by Endress (1989¢c)
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among the apetalous Fothergilleae. Our results
confirm  the close  relationship  of
Molinadendron o Sinowilsonia suggested by
Bogle (1970) and Endress (1970).

Fothergilleae

The Distylieae of Harms (1930) included
Distylium, Svcopsis, and Sinowilsonia, while
his  Fothergilleae  contained  Parrotia,
Parrotiopsis, and Fothergilla. Endress (1989c¢)
transferred Sinowilsonia 1o the Eustigmateae
and combined the remaining five genera, plus
Matudaea, Molinadendron, and Distvliopsis,
into his Fothergilleae. The recently described
Shaniodendron (Deng et al., 1992) is also
placed in the Fothergilleae, bringing the num-
ber of genera in the tribe to nine. Phylogenetic
analyses based on morphology and DNA
sequences of ITS and matK recognized the
monophyly of the Fothergilleae sensu Endress.
but minus Matudaea and Molinadendron (Li,
1997). The same basic conclusion is supported
here. However, in our trees (Figs. 2, 3).
Fothergilla does not consistently form a clade
with the branch containing the rest of the
Fothergilleae sensu Li; multiple sources of data
are needed to fully resolve these relationships.
Nevertheless, these results show that the
Distylieae and Fothergilleac of Harms (1930)
and the Fothergilleae of Endress (1989¢) are
not monophyletic as Matudaea and
Molinadendron are related elsewhere.

Matudaea is a central American genus and is
distinguished by several morphological charac-
ters, such as bisexual, hypogynous flowers,
elongated anther protrusion, and stellate-lepi-
dote anthers. Lundell (1940) believed that
Matudaea was closely related to Distylium as
both of these genera lack petals, and their
ovaries are superior. In our trees (Figs. 2, 3)
Matudaea and Distylium are separated, and
Matudaea is placed instead with the members
of Loropetalinae sensu Endress (1989a; HL in
Figs. 2, 3). This relationship is supported by
several morphological characters, e. g., bisex-
ual flowers and distinct anther protrusion.

Shaniodendron is a segregate of Hamamelis
and has been placed in the Fothergilleae (Deng
et al., 1992). Parsimony analysis of ITS
sequences, with gaps treated as a fifth character
state, supported a connection between
Shaniodendron and Parrotia (Li et al., 1997).
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On this basis it was proposed that
Shaniodendron be combined with Parrotia
(Hao et al., 1998). However, in our trees (Figs.
2. 3). Shaniodendron and Parrotia are not
directly linked. Distyliopsis is a segregate from
Sveopsis, which Endress (1970) believed to be
more closely related to Distvlium. This pro-
posal was supported in ITS analyses (Li et al.,
1997). However, our study suggests that
Distyvliopsis is more closely related to Sycopsis.
In this study, and in previous phylogenetic
analyses (Li et al., 1997; Li, 1997), only two
species of Distvlium and one species of
Svcopsis have been sampled: broader sampling
and more data are needed to resolve these
relationships.

The apetalous flowers of both Fothergilla and
Parrotiopsis are insect-pollinated, while those
of other apetalous genera are wind-pollinated.
Fothergilla attracts pollinators using the showy,
whitish stamen filaments, whereas Parrotiopsis
employs large, showy bracts (Bogle, 1968,
1970; Endress, 1989b). Phylogenetically, these
do not appear to form a clade as indicated by
Endress (1989b).
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FiGure 1. Trees of the Hamamelidoideae based on parsimony analysis of separate data sets of the non-coding
regions of cpDNA using gaps as missing data (a, b) or as a fifth character state (c, d). a. Strict consensus of
820 trees of 83 steps based on #ral intron data, CI = (1,89, RC = 0.81; b. Strict consensus of two trees of 102
steps based on the rrnL-traF spacer data, Cl = 0.92, RC = 0.84; c. Strict consensus of 64 trees of 178 steps
based on raL intron data, C1 = (.83, RC = 0.70; d. Strict consensus of two trees of 177 steps based on the
trnL-trnF spacer data, C1 = (.81, RC = 0.71.
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FiGURE 2. The strict consensus of 26 most parsimonious trees of 205 steps based on combined sequences of
the non-coding regions of chloroplast DNA using gaps as missing data; CI = 0.88, RC = (0.77. Numbers above
and below branches are decay indices and bootstrap percentages, respectively. Boxed letters indicate three
major clades, C = Corylopsis lineage, H = Hamamelis lineage. and T = Trichocladus lineage. Groups indi-
cated by black bars follow Endress (1989¢). CO = Corylopsideae, HH = Hamamelidinae (Hamamelideae), HL
= Loropetalinae (Hamamelideae), HD = Dicoryphinae (Hamamelideae).
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FIGURE 3. The strict consensus of eight shortest trees of 394 steps based on sequences of the non- coding
regions of chloroplast DNA using gaps as a fifth character state; CI = 0.79, RC = 0.65. Symbols as in Fig. 2.
The three columns on the right represent three morphological characters and their states: 1. Apetaly, 2. Strap-
shaped petal, and 3. Pollination: wind (W), insect (I), bird (B).



