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ABSTRACT
Motivation: A noble and ultimate objective of phyloinfor-
matic research is to assemble, synthesize, and explore the
evolutionary history of life on earth. Data mining methods
for performing these tasks are not yet well developed, but
one avenue of research suggests that network connectiv-
ity dynamics will play an important role in future methods.
Analysis of disordered networks, such as small-world net-
works, has applications as diverse as disease propagation,
collaborative networks, and power grids. Here we apply
similar analyses to networks of phylogenetic trees in order
to understand how synthetic information can emerge from
a database of phylogenies.
Results: Analyses of tree network connectivity in Tree-
BASE show that a collection of phylogenetic trees behaves
as a small-world network—while on the one hand the
trees are clustered, like a non-random lattice, on the other
hand they have short characteristic path lengths, like a
random graph. Tree connectivities follow a dual-scale
power-law distribution (first power-law exponent ≈1.87;
second ≈4.82). This unusual pattern is due, in part, to
the presence of alternative tree topologies that enter
the database with each published study. As expected,
small collections of trees decrease connectivity as new
trees are added, while large collections of trees increase
connectivity. However, the inflection point is surprisingly
low: after about 600 trees the network suddenly jumps to
a higher level of coherence. More stringent definitions of
‘neighbour’ greatly delay the threshold whence a database
achieves sufficient maturity for a coherent network to
emerge. However, more stringent definitions of ‘neighbour’
would also likely show improved focus in data mining.
Availability: http://treebase.org
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INTRODUCTION
The emerging field of phyloinformatics promises not only
to synthesize and advance our understanding of evolution-
ary history, but also to have far-reaching effects in other
areas of biology. For example, phylogenetic knowledge
is increasingly used as a bridge between functional
genomics, evolution, and development—unravelling how
genotype becomes phenotype requires that we know phy-
logeny almost as well as we know genomics (Eisen, 1998;
Mizuno et al., 2001). Coincident with this expansion in
the use of phylogenies has been an exponential growth in
the number of published trees (Pagel, 1997; Sandersonet
al., 1993). However, methods of organizing, synthesizing,
and data mining this information are non-trivial, and
ideas for how to perform these tasks are still in their
infancy. The inertia in this field stems from the fact that
the building blocks of phylogenetics are complex: trees
are discrete structures in which information is stored in
the topology of hierarchically nested sets of nodes, in the
distances between these nodes, and in the identities of the
nodes themselves.

Nonetheless, recent progress has been made in cata-
loguing and synthesizing phylogenetic data. For example,
a handful of databases have been developed to store
phylogenetic information (e.g. CladeStore, http://palaeo.
gly.bris.ac.uk/cladestore/cladestore.html; GPPRCG, http:
//ucjeps.herb.berkeley.edu/bryolab/greenplantpage.html;
Jungle, http://smiler.lab.nig.ac.jp/jungle/jungle.html;
ToL, http://www.tolweb.org; and TreeBASE, http:
//www.treebase.org). In addition, various supertree meth-
ods are now available for synthesizing information from
a collection of independently generated trees (Sanderson
et al., 1998), and more research in this area is under way.
What is still poorly understood is how to assemble and
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data mine collections of phylogenetic trees. Accordingly,
this paper investigates the dynamics of tree networks in
TreeBASE so as to gain insight into methods of amassing
and exploring phylogenetic information.

The phylogenetic trees in TreeBASE are stored as
distinct entities and are primarily searchable by querying
taxonomic names that identify either the internal nodes of
a tree or the leaves of a tree (Pielet al., 2001; Sanderson
et al., 1994). This approach does not always succeed in
finding all relevant trees because seldom do the authors
fully annotate all relevant internal nodes, and seldom is
the taxon sampling of relevant trees sufficiently dense
as to guarantee a hit by the query. To overcome this
problem, TreeBASE has implemented a tool called ‘tree
surfing,’ which finds neighbouring trees by searching on
all taxa found in a starting tree (Pielet al., 2001). The
taxa in the set of found trees can then be used to find
even more trees, etc. Each subsequent iteration produces
a new set of trees that is yet another degree of separation
from the starting tree. In this fashion, a neighbourhood
of trees can be assembled and explored with far more
success than what would result from a series of simple
taxon name queries. This approach is a promising way
of exploring phyloinformatic data, especially once the
database has caught up with the exponential growth in
published phylogenies, and hence once the sheer number
of trees would otherwise overwhelm a user’s ability to
recover information successfully if limited to simple taxon
queries.

While this concept has promise, it is unclear whether
tree surfing will continue to function properly once
TreeBASE has expanded to include a significantly greater
number of trees. For example, will the diameter of
the network (as measured by the ‘characteristic path
length’, which is the average of the degree of separation
between pairs of trees) expand with TreeBASE’s growth
until traversing the data is excessively laborious; or
will it implode into a tight ball such that traversing
the database is too instantaneous? Will TreeBASE ever
achieve a fully connected network, or will there always
be a certain fraction of disconnected ‘satellite’ networks?
Recent interest in disordered networks has demonstrated
how analysis of the small-world dynamics in a network
can help to answer these questions (Amaralet al., 2000;
Barb́asi and Albert, 1999; Strogatz, 2001; Watts, 1999;
Watts and Strogatz, 1998). Here we examine the dynamics
of tree networks in TreeBASE so as to assess tree surfing
as a means of mining phyloinformatic data.

ANALYSES
Small-world networks
Do networks of trees assembled from the literature behave
like small-world networks? Small-world networks are

defined as that subset of disordered networks having two
seemingly paradoxical properties: on the one hand their
connections are locally regular and non-random; on the
other hand, any two vertices (i.e. nodes) can be linked
through just a few edges (i.e. connections) by way of other
vertices (Amaralet al., 2000; Watts, 1999). The former
can be estimated by using a measure of cliquishness
(such as a clustering coefficient,C , which is the fraction
of edges in each vertex’s neighbourhood that actually
exist, averaged over all vertices) to compare between
the actual network and a randomly permuted network
(Watts and Strogatz, 1998). The latter can be measured
in several ways: one way is to ask whether the average
shortest distance between all pairs of vertices increases
logarithmically with the size of the network (Amaralet
al., 2000; Bollob́as, 1985); another way is to compare the
characteristic path length (L) between the actual network
and a randomly permuted one (Watts and Strogatz, 1998).

Simulated island growth
We simulated the growth of TreeBASE by randomly
creating 50 subsets of 490 studies, and then estimating
L by averaging the minimum number of degrees of
separation among 100 pairs of randomly selected trees
from within the largest interconnected network. Since
TreeBASE is a relational database where trees are stored
in a table with a many-to-many relation with another table
that stores the taxa, determining the minimum number of
degrees of separation between two trees is a simple matter
of executing a series of joins between the two tables. One
degree of separation is counted each time a new selection
of trees is created based on a selection of taxa made by a
join from the previous selection of trees.

The simulated growth of TreeBASE appears to ap-
proximate a positive logarithmic relationship between the
number of trees in the largest island (i.e. the largest single
network of interconnected trees) and the characteristic
path length of the network (Fig. 1). Since the growth
of the island’s diameter slows relative to the growth of
the database the ease of traversing the network remains
manageable, and this effect is one of the prime advantages
of having a network with small-world properties. In
contrast, the growth of island diameter in a regular lattice
simulation (in which the number of trees and distribution
of tree size are the same) continues growing linearly,
while that of a randomly rewired version of the database
drops off, collapsing network traversal (Fig. 1).

Cliquishness and the diameter of the network
Small-world networks, as opposed to purely random net-
works, are locally cliquish while maintaining a relatively
small network diameter regardless of the network’s size
(Watts, 1999; Watts and Strogatz, 1998). To evaluate
this tendency in TreeBASE, we generated a randomly
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Fig. 1. Simulated growth of TreeBASE. Selecting at random and
without replacement from among the 490 studies in TreeBASE
created 50 databases, wherein the size of each database was
also determined at random. For each replicate, the largest island
of interconnected trees was measured for its characteristic path
length (L), by taking the average for the minimum number of
degrees of separation between 100 pairs of randomly selected trees.
Using the same distribution of numbers of taxa per tree as in
TreeBASE, a randomly permuted version (Random Graph) and
a linearly connected version (Regular Lattice) were analyzed for
comparison. The characteristic path length in TreeBASE appears to
grow logarithmically with the number of vertices and is intermediate
to a random graph and regular lattice as would be expected from a
small-world network.

permuted version of the database so as to compare the
values for the actual characteristic path length (which
estimates the diameter of the network) and clustering
coefficient (a measure of cliquishness) with those of a
random graph. The 10 825 taxa for the 989 trees that make
up the largest island in TreeBASE were permuted. In this
way the actual and randomized databases had the same
number of trees and each tree had the equivalent number
of taxa, yet taxa in each tree of the permuted database
were assigned at random. The clustering coefficient was
calculated according to Watts and Strogatz (1998) as
the average over all vertices (i.e. trees) of the fraction
of possible edges in each vertex’s neighbourhood (i.e.
connections) that actually exist:

C =
∑N

i=l
2vi

ki (ki −1)

N

whereinki is the number of neighbours of thei th vertex;
vi is the number of edges among all such neighbours; and
N is the number of vertices.

The results show comparatively similar network dy-

Table 1. Characteristic path lengthL and clustering coefficientC for four
actual networks compared to randomized versions in which the number of
vertices and the average number of edges per vertex are the same. Data
for the network of film actors, the power grid, and the neuronal network
of C.elegans were published in Watts and Strogatz (1998)

Network Vertices Lactual Lrand Cactual Crand

Film actors 225 226 3.65 2.99 0.79 0.00027
Power grid 4 941 18.7 12.4 0.08 0.005
C.elegans 282 2.65 2.25 0.28 0.05
TreeBASE 989 5.11 2.00 0.813 0.182

namics between TreeBASE’s main tree island and other
well-studied systems (Table 1). Special properties in these
other systems, notably in the case of the film actor’s
network, are thought to be affected by preferential attach-
ment of new vertices in a growing network, extinction of
old vertices, and vertex saturation (Barbási and Albert,
1999). As with these other networks, we see in TreeBASE
a greater relative difference between the cliquishness
of the actual and random networks than between the
characteristic path lengths. The relatively high sense of
cliquishness (Cactual= 0.813) presumably occurs because
the samecombinations of taxa in one tree are more likely
to occur in neighbouring trees as compared to unrelated
trees. This effect emerges because underlying the produc-
tion of phylogenetic trees is a single, enormous tree of
life. In contrast, the unconstrained rewiring of a random
network has an absence of cliquishness (Crand = 0.182).

The distribution function of connectivities
The dynamics of large networks can be studied by
examining the distribution function of connectivities, seen
as a curve representing the cumulative distribution of
connections. The cumulative distribution is the running
sum of the frequencies or probabilities of connecting to
k neighbouring vertices, and this is plotted against the
number of vertices,k (Amaral et al., 2000; Barb́asi and
Albert, 1999). Networks that maintain a stationary, scale-
free power-law distribution arise as a consequence of the
way in which they grow—where new vertices connect
preferentially to vertices that are already more popular
(Barb́asi and Albert, 1999). Amaralet al. (2000) show that
broad-scale networks with a sharp cut-off to their power
law regime and single-scale networks with a fast decaying
tail are also encountered. The tendency of networks to take
on any of these three characteristics is thought to arise
from differences in certain limiting factors that affect the
growth of the network.

Two important limiting factors that have been identified
in other systems are: (1) the ageing of vertices, such as
deceased actors in a growing network of actors; and (2) the
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increased costs of adding links to popular vertices, such
as the limited growth space at an airport (Amaralet al.,
2000). In principle, trees do not age, but the popularity
of taxa that link trees could decrease with time. As might
be expected, species such asDrosophila melanogaster and
Saccharomyces cerevisiae are among the most popular in
TreeBASE, probably because so much of their genome
has already been sequenced that authors of new trees are
tempted to include them as outgroups. To the extent that
the genomes of other taxa will become better represented
in GenBank, previously popular taxa may become less
frequently used and their relative popularity will wane.
This aging will cause trees to lose their popularity
gradually, and we would expect a scale-free regime to
shorten. Likewise, to the extent that TreeBASE’s staff
seeks out trees rather than relying on passive voluntary
submission, it is likely that the staff would prefer to add
trees that are not already represented in the database. This
preference would, in effect, increase the cost-to-benefit
ratio of adding trees with tight connections to pre-existing
popular trees. Such increasing costs could also narrow
the scale-free range, and perhaps introduce a Gaussian
or exponential dip to the tail. Nonetheless, popular taxa
(e.g. D.melanogaster, Homo sapiens, S.cerevisiae etc.)
are still well represented in GenBank, and their impact
on phylogenetics is likely to continue. Additionally, most
submissions to TreeBASE enter passively through the
voluntary efforts of authors and journal editors. Therefore,
it is unclear to what degree the popularity of taxa and
selectivity of staff will affect network dynamics.

We examined the distribution function of connectivities
by graphing the running sum of the frequencies that trees
connect to other trees on log–log and semi-log plots.
Remarkably, the result is an unusual dual-scale power-law
regime (Fig. 2B) that does not match any of the classes
of networks documented by Amaralet al. (2000). Like an
arm with an elbow joint, our tree network shows a sudden
change in the distribution function for trees with more
than 25 neighbours. The exponent of the first distribution,
α − 1 ≈ 0.87, α ≈ 1.87 and the second distribution,
α − 1 ≈ 3.82,α ≈ 4.82, compares withα = 2.3 for the
actor network;α = 2.1 for the www network; andα = 4
for the power grid data, as reported in Barbási and Albert
(1999).

We surmised that the dual scale distribution could be
an artefact because there are, on average, 2.6 trees per
submission, and that while these trees are neighbours,
as they share almost all their taxa in common, they
nonetheless cannot be considered independent instances
of neighbouring trees. To exclude the effect of multiple
trees, we pruned the database to retain just one tree per
submission and then re-analyzed the network. The result
still showed a dual-scale power-law regime, but with the
first log–log slope being steeper (4.6652k−0.997) and the
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Fig. 2. The distribution function of connectivities for the main
island in TreeBASE. These graphs plot the cumulative sum of the
frequencies with which a tree connects tok other trees. For this
island of trees,N = 989 vertices and average connectivity(K ) =
14.99. (A) Linear-log plot more or less approximates a straight line,
suggesting an exponential decay in the probability of connectivities.
(B) Log–log plot of the same data. A scale-free distribution would
show a single power-law decay and the points would approximate
a straight line. For tree networks, however, there are clearly two
distinct scales, each with its own power law.

second one flatter (2485k−2.8814) than in the previous
analysis. While the difference between the dual-scales
is less pronounced when superfluous trees are excluded,
the dual-scale nature of this function is by no means
eliminated, and the inflection point at about 25 neighbours
remains the same.

The emergence of an island network
Aside from the dynamics that go on within a tree network,
it is also important for us to know how the main island
network is expected to grow with the growth of the
database. Indeed, supertree algorithms for assembling the
tree of life can only function once all phylogenetic trees
are, in some way, connected within a single tree network.
Yet assembling the tree of life is like putting together an
enormous puzzle using millions of small puzzle-pieces.
How many puzzle-pieces are needed before all pieces can
be linked, or before a skeleton of the whole picture starts to
emerge? In other words, when are trees most disconnected
and when will they be fully connected? How do the criteria
for ‘neighbour’ affect the emergence of a single island
network?

We examined these issues by creating eight databases
of different sizes using the respective trees of randomly
selected studies from TreeBASE. The neighbourhood
network for each tree of a given database was followed
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Fig. 3. The formation of a main island network of interconnected
trees. The distribution of the minimum degrees of separation
between every tree and the farthest tree in its island is presented
for each of eight randomly selected collections of trees. A main
super-island network of trees is fully separated from the remaining
satellite islands with a database of 500 trees. A database of about
850 trees has a main island network that is most diffuse, with some
trees distant by up to 17 degrees of separation. By about 1000 trees,
the main island network is tightening, and new trees are more likely
to join the main island than they are to form independent satellite
islets.

until a final degree of separation was reached when no
more trees could be found by any subsequent iteration.
The distribution of this maximum chain of interconnected
trees is shown for each of the eight databases (Fig. 3).
In all databases, we see evidence for numerous, small
disconnected islets, where each is traversable in four or
fewer degrees of separation. As the database grows in size,
the number of islets continues to grow, but in addition
several large islands start to emerge. Between 544 and
683 trees, the major islands have grouped into a single
main island that takes as much as 16 degrees of separation
to traverse (Fig. 3). At about 850 trees, the main island
has reached its most thinly interconnected form, with
some trees requiring 17 degrees of separation to cover
the entire network. Subsequently, at 990 trees, it would
appear that new trees are more likely to join with the main
island than they are to from lonely, disconnected islets.
This pattern causes the main island to tighten, with the
most distant trees being separated by no more than 15
degrees. The database would appear to show that there is
a critical point when a skeleton tree suddenly synthesizes
with remarkably few trees.

Weexamined the growth of the main island more closely
as a percentage relative to all trees in the database (solid
squares in Fig. 4). Initially, a database with only one tree
would, of course, have a main island that represents 100%
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Fig. 4. Largest island of trees as a percentage of all trees for
simulated databases of different sizes. The largest island size was
calculated for each randomly generated database and plotted as
a percentage of all trees in the database. The same was done
using more stringent definitions of neighbour, from two or more
connecting taxa to four or more connecting taxa. A power regression
line (R2 = 0.85) is shown for those databases with a stringency of
four or more taxa. The dashed lines are drawn by hand to illustrate
the trends in the data.

of the database. But as trees are added, the largest island
as a percentage of all trees reaches a minimum at about
250 trees (Fig. 4). Between 500 and 700 trees, we see
a sudden inflection point in the curve, where the largest
island grows from about 25% to over 60% of all trees
in the database. Subsequent to this, the growth of the
curve begins to slow, and by 1200 trees the main island
holds about 80% of the database. Presumably the curve
will eventually reach 100%—assuming that all trees are
connectable since all life is related. However, realistically
there will always be some trees that fail to connect with
other trees because of various oddities, such as peculiar
or unusual spelling of taxon names. Therefore, although
this graph (Fig. 4) does not allow us to predict the number
of trees required to achieve a complete network, it does
demonstrate some interesting critical values. Specifically,
adatabase of 250 trees is at its least connected state; and a
database should have more than 600 trees in order to cross
a critical threshold in tree connectivity. This behaviour is
equivalent to the sudden coalescence among components
of a random graph (Erd̈os and Ŕenyi, 1960).

As is evident in the graph (Fig. 4), increasing the
stringency of the definition of neighbour greatly affects the
growth of the main island. Tree surfing with a stringency
of level two indicates that at least two taxa must be in
common between two trees for them to be considered
neighbours; level three means at least tree or more taxa,
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and so forth. For a stringency of level two, although
the largest island as a proportion of all trees is steadily
increasing, it is still far behind the growth of the curve
for stringency level one, and it does not yet appear to
have passed its own inflection point. In fact, the largest
island has only 214 trees in a database of 1292. Under
such conditions it appears that it will take a database
of more than double the size as is required for level
one before a fully interconnected network is achieved.
Tree surfing with a higher stringency has the advantage
of largely avoiding spurious connections that result from
trees with unusually distant outgroups. We can imagine
that for certain data mining purposes, higher stringency
levels would be desirable despite the fact that these levels
demands that the database be better populated.

DISCUSSION
Analysis of network dynamics is one approach to under-
standing the behaviour of complex systems in biology.
This method is increasingly being used in bioinformatics,
such as in improving models of disease propagation
(Liljeros et al., 2001; Newman, 2002), evaluating protein
and DNA networks (Fraseret al., 2002; Jeonget al., 2001;
Rzhetsky and Gomez, 2001), and data mining gene chip
expression patterns (del Rioet al., 2001) Recently much
attention is specifically applied to the behaviour of grow-
ing networks (Klemm and Eguı́luz, 2002; Xulvi-Brunet
and Sokolov, 2002). Similarly, phyloinformatic databases
store a growing network of complex and unusual data
types that can benefit from novel approaches to data
mining, such as network analysis. In TreeBASE the
‘tree surfing,’ function uses iterative joins as a means of
traversing and exploring the data. The network dynamics
of an interconnected island of trees is critical to the
performance of this method. By running Monte Carlo
simulations with tree networks and by closely examining
of the data in TreeBASE, we have shed some light on the
nature of these tree networks.

Central to the success of tree surfing is the fact that
networks of trees demonstrate small-world dynamics
(Fig. 1 and Table 1). Despite the apparent non-random
aspect to published phylogenies—collectively, networks
of trees allow the data miner to traverse the entire database
in short order regardless of the size of the database. The
implication of this result is that even if phylogenies for
all the world’s taxa were represented in the database,
a method for assembling a generalized picture for the
complete tree of life is still manageable if it is based on
a tree surfing approach.

The distribution function of connectivities can tell
us about factors that influence the nature and growth
of networks (Amaralet al., 2000). In TreeBASE, the
function of connectivities shows a hitherto undocumented

distribution type in which a distinct dual-scale is evident
(Fig. 2). We demonstrated that this dual-scale is in part
due to the artefactual presence of numerous alternative
tree topologies submitted by authors. Removing this effect
causes the angle between the two power regression lines
to increase, but not sufficiently to eliminate their dual
nature. It is unclear what other factors could explain
their continued presence; possibly the inclusion of distant
outgroups in certain trees may be a contributing cause.

The manner with which a phyloinformatic network
matures has some notable characteristic features. If we
assume that TreeBASE is a fair reflection of a reasonably
random collection of trees taken from the literature, we
can draw some conclusions about tree networks in general.
When a database reaches about 500 trees, there begins a
process of rapid fusion in the network accompanied by a
clear and distinct separation between a main island of trees
and the remaining disconnected islets (Fig. 3). By about
900 trees, this island network has reached its most diffuse
state—after that the island diameter shrinks as additional
trees provide alternative pathways that shorten minimum
distances within the network. These results suggest that
phyloinformatic databases should store at least 1000 trees
before there is a reasonable skeleton of the tree of life with
which to build on. Specifically, a database of 250 trees is
at its least coherent and most disconnected state, while an
abrupt inflection point in the maturation of the network
occurs at about 600 trees (Fig. 4).

However, the assumption that TreeBASE contains a fair
sampling of trees is tenuous, and clearly our observations
are more germane in terms of how biologists unearth
phylogenetic knowledge than they are in terms of how
nature herself evolves. A disproportionate number of trees
were initially taken from plants, and more recently the
databases have shifted its emphasis toward fungi. The
database has not yet included some very large trees that
have recently been published. Moreover, even if it were a
fair sampling of trees, the biologists publishing these trees
undoubtedly are biased in how they sample the earth’s
organisms. At best, TreeBASE is only a sampling of the
effective or working number of species in the world, not
the true number—since only a subset of the true number is
available for biologists to study.

The stringency of our definition of neighbour has a
profound impact on our ability to traverse a network
and on the ability of a network to form in the first
place. Under the minimum stringency of one taxon
connecting two trees, a database of 1300 trees has an
island representing over 80% of trees, compared with 20
and 5% for stringencies of two and three taxa respectively
(Fig. 4). However, ultimately a more stringent definition
will likely produce better results for use with supertree
algorithms and synthetic methods for inferring the tree of
life. For example, matrix representation with parsimony
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requires an overlap of at least two taxa among all trees.
Our vision for the future of data mining in phyloin-

formatics is the following: imagine a diffuse three-
dimensional shape of points representing individual trees
in which the arrangement of these points in space is
determined by tree-to-tree distances, as measured by their
degrees of separation under various levels of stringency.
By manipulating this cloud of points in virtual space, the
biologist can explore and select collections of trees that
focus on certain segments of the tree of life. These collec-
tions of trees could then be subjected to various synthetic
tools, such as supertree algorithms, and from that a coher-
ent pattern of organic evolution would emerge. Methods
specifically having to do with how tree-to-tree distances
are estimated would stem from what we have learned
about the network dynamics of trees, as reported herein.
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