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Chapter 22

DETECTING DIVERSIFICATION RATE
VARIATION IN SUPERTREES

Brian R. Moore, Kai M. A. Chan, and Michael J. Donoghue

Abstract: Although they typically do not provide reliable information on divergence
times, supertrees are nevertheless attractive candidates for the study of
diversification rates: by combining a collection of less inclusive source trees,
they promise to increase both the number and density of taxa included in the
composite phylogeny. The relatively large size and possibly more dense
taxonomic sampling of supertrees have the potential to increase the statistical
power and decrease the bias, respectively, of methods for studying
diversification rates that are robust to uncertainty regarding the timing of
diversification events. These considerations motivate the development of
atemporal methods that can take advantage of recent and anticipated advances
in supertree estimation. Herein, we describe a set of whole-tree, topology-
based methods intended to address two questions pertaining to the study of
diversification rates. First, has a given (super)tree experienced significant
variation in diversification rates among its branches? Second, if so, where
have significant shifts in diversification rate occurred? We present results of
simulation studies that characterize the statistical behavior of these methods,
illustrating their increased power and decreased bias. We also applied the
methods to a published supertree of primates, demonstrating their ability to
contend with relatively large, incompletely resolved (super)trees. All the
methods described in this chapter have been implemented in the freely
available program, SYMMETREE.

Keywords: cladogenesis; diversification rate shifts; diversification rate variation; equal-
rates Markov random branching model; extinction; Primates; speciation;
supertrees; tree shape; Yule branching process
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1. Introduction

Supertrees represent somewhat of a mixed bag for the study of
diversification rates, providing some kinds of information in unprecedented
profusion but inherently limited in their ability to provide other types of
pertinent data. Ideally, (super)trees can provide two sources of information
relevant to the study of diversification rates: the temporal distribution of
branching events through time and the topological distribution of species
diversity across its branches1.

It is generally accepted that, by virtue of directly incorporating
information on the timing of diversification, temporal methods enjoy an
advantage in power relative to their topological counterparts (e.g., Sanderson
and Donoghue, 1996; Paradis, 1998a, b). This power advantage has, in turn,
motivated the elaboration of temporal methods to effectively address a
relatively wide range of evolutionary questions related to diversification
rates. Unfortunately, existing supertree methods typically do not provide
reliable branch-length estimates (but note recent progress by Lapointe and
Cucumel, 1997; Bryant et al., 2004; Lapointe and Levasseur, 2004; Vos and
Mooers, 2004), essentially precluding the use of more powerful temporal
methods for the inference of diversification rates.

On the other hand, any decrease in power associated with the necessary
reliance on topological methods might be offset to some extent by the
typically larger size of supertrees because the power of these methods is
known to scale with tree size (e.g., Kirkpatrick and Slatkin, 1993; Kubo and
Iwasa, 1995; Paradis, 1997, 1998a, b; Agapow and Purvis, 2002). More than
just their potentially larger size, however, is the promise of supertrees to
greatly increase the density of sampled taxa. Both temporal and topological
methods are sensitive to incomplete and/or nonrandom taxon sampling (e.g.,
Kubo and Iwasa, 1995; Nee et al., 1996; Pybus and Harvey, 2000;
Barraclough and Nee, 2001) for the simple reason that these methods do not
discriminate between species that have been omitted from a phylogenetic
analysis and those that have been eliminated by extinction. The relatively
broad and dense taxonomic sampling of supertrees should therefore confer

1 Two corresponding classes of methods have been developed to exploit these different sources of
information (Sanderson and Donoghue, 1996). The first class relies exclusively on topological
information, comparing the observed difference in species diversity between two (or more) groups
descended from a common node to the expectation generated under a stochastic model of diversification
(e.g., Slowinski and Guyer, 1989a, b, 1993; Slowinski, 1990). The second class utilizes estimates of
branch length or duration to infer the (absolute or relative) timing of speciation events and similarly
compares the observed distribution of speciation events through time with that expected under a null
model of random diversification (e.g., Harvey et al., 1991, 1994a, b; Hey, 1992; Nee et al., 1992,
1994a, b, 1995, 1996; Harvey and Nee, 1993, 1994; Sanderson and Bharathan, 1993; Kubo and Iwasa,
1995; Paradis, 1997, 1998a, b; Pybus and Harvey, 2000; Nee, 2001; Pybus et al., 2002). We refer to
these two approaches as topological and temporal methods, respectively (Chan and Moore, 2002).
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increased statistical power and decreased bias to studies of diversification
rates, which motivates the development of methods that do not rely on
temporal information.

Furthermore, even when reliable branch-length estimates are available,
there might be situations in which it is preferable to omit these data from
studies of diversification rates. Several types of evolutionary study entail
hypothesized associations (whether correlational or causal in nature)
between diversification rates and some other variable that is conditioned on
branch lengths/durations. For example, there is considerable interest in
exploring the putative correlation between rates of diversification and rates
of molecular evolution (e.g., Mindell et al., 1989; Barraclough et al., 1996;
Savolainen and Goudet, 1998; Barraclough and Savolainen, 2001; Jobson
and Albert, 2002). Similarly, many evolutionary questions pertain to the
relationship between rates of diversification and rates (and/or ancestral
states) of morphological evolution. Often, rate estimates for such variables
are either directly or indirectly conditioned on branch-length estimates (e.g.,
model-based inference of rates of nucleotide substitution, and model-based
inference of rates and/or ancestral states of morphological character
evolution, respectively). Consequently, attempts to understand the
correlation of such variables to variation in rates of diversification will be
confounded if both are conditioned on the same set of branch-length
estimates. For such inference problems, it would therefore be desirable to
possess methods that do not rely on branch-length data.

Accordingly, the nature of the data at hand and/or the hypotheses of
interest will often preclude the inference of diversification rates based on
temporal information. Clearly, topological methods warrant further
consideration. In this chapter, we extend existing topological methods in
new ways to exploit new opportunities. Because different people have
different interests in the study of differential diversification rates, we
describe a suite of methods intended to address two different questions: 1)
has a given tree experienced significant variation in diversification rates
among its branches; and, 2) if so, on which branches have significant shifts
in diversification rate occurred? We explore the statistical behavior of the
various methods by means of simulation and illustrate their application to
empirical data using a published supertree of primates (Purvis, 1995).
Choice of this data set was motivated by two considerations: the primate
supertree is in many respects representative of those published for other
groups (e.g., in its size, degree of resolution, and methods of estimation), and
this tree has been used previously to explore various aspects of
diversification rates in primates (e.g., Purvis et al., 1995), thereby affording
comparison of our results to those derived with other methods. All the
methods described in this chapter have been implemented in the freely
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available software program, SYMMETREE (http://www.kchan.org or
(http://www.phylodiversity.net/brian/).

2. The equal-rates Markov random branching model

The ability of phylogenies to inform studies of differential diversification
rates has been appreciated for some time. Hennig (1966) reasoned that any
difference in species diversity between two sister groups, which are by
definition of equal age, must necessarily reflect different rates of
diversification (i.e., speciation minus extinction) in those groups. However,
other researchers were quick to caution against overly deterministic
interpretations of such differences: even if the underlying probability of
diversification were identical in all lineages, some degree of variation in
their realized diversification rates would be expected to arise because of the
inherently stochastic nature of the branching process (e.g., Raup et al., 1973;
Gould et al., 1977).

In recognition of the nature of the process under study, stochastic
branching process models are frequently employed to generate an expected
distribution of differences in diversity against which observed differences
can be compared. One of the most elemental and frequently invoked models
is the so-called equal-rates Markov (ERM) random branching process (Yule,
1924; Kendall, 1948; Harding, 1971). This is a continuous-time, discrete-
state, pure-birth Markov process in which the probability of a branching
event, λ, is constant for each tip in a growing tree at any moment in time2.
Under the ERM model, the allocation of diversity among two sister groups
follows a uniform distribution, such that all possible partitions of N species,
1:(N – 1), 2:(N – 2), 3:(N – 3) … (N – 1):1, are equiprobable. Accordingly,
given an observed diversity partition of N  into l and r species among two
sister groups, we can calculate the cumulative probability of realizing a
diversity partition as or more extreme under the ERM model as

(1)

      

€ 

P =
2l

N −1( )

2 Note that the ERM model allows λ to vary through time, so long as it is equal across all tips at any
instant (e.g., Harding, 1971). This property of the ERM model technically distinguishes it from the more
restricted constant-rate, pure-birth Yule branching process model because the latter constrains λ to be
constant both across tips and through time (e.g., Yule, 1924). Nevertheless, the two models are
operationally identical when branching times are unknown, as is the case for topology-based inferences
of diversification rate.
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(unless l = N / 2, in which case P = 1), where l is the number of species in
the less diverse of the two sister groups (Slowinski and Guyer, 1989a). A
significant difference in sister-group diversity constitutes rejection of the
ERM null model, and therefore, suggests that the two lineages have
diversified under significantly different rates (Slowinski and Guyer, 1989a,
b; Slowinski, 1990). For convenience, we refer to these P-values as ERM
nodal probabilities because they pertain to the cumulative ERM probability
of realizing a diversity partition between lineages descended from a shared
node.

Derivation of an ERM nodal probability incorporates minimal
information on the topological distribution of species diversity (only two
observations are made). Because the statistical power of a test is a function
of sample size, the sensitivity of these single-node tests to differential
diversification rates is quite low (e.g., Kirkpatrick and Slatkin, 1993; Fusco
and Cronk, 1995; Sanderson and Donoghue, 1996; Sanderson and
Wojciechowski, 1996). As we will demonstrate in the following sections,
however, these nodal probabilities can serve as building blocks that can be
variously generalized to construct methods that harness their collective
power.

3. Detecting among-lineage diversification rate
variation

In this section we consider the question, “Has a given tree experienced
significant diversification rate variation among its branches?” This is the
diversification rate analogue to the problem of detecting among-lineage
substitution rate variation in studies of molecular evolution. The ability to
detect among-lineage diversification rate variation has parallel applications
to tests of the molecular clock: tests of rate homogeneity are a prerequisite
for the application of several temporal methods that assume negligible levels
of among-lineage diversification rate variation (e.g., Hey, 1992; Harvey et
al., 1994a, b; Nee et al., 1994a, b; Kubo and Iwasa, 1995; Paradis, 1997,
1998a, b; Pybus and Harvey, 2000). Additionally, and like its molecular
counterpart, the study of diversification rate variation has important
evolutionary implications that might be of interest in their own right (Chan
and Moore, 2002).

Previous work on this problem has largely involved the development of
“tree-balance indices”, metrics that variously summarize the topological
distribution of species diversity as a single number. Approximately 20 such
indices have been proposed (e.g., Colless, 1982; Shao and Sokal, 1990;
Heard, 1992; Kirkpatrick and Slatkin, 1993; Page, 1993; Fusco and Cronk,
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1995; McKenzie and Steel, 2000; Agapow and Purvis, 2002; Purvis et al.,
2002). Several authors have noted that these indices appear to capture
different but poorly characterized aspects of tree shape (Shao and Sokal,
1990; Kirkpatrick and Slatkin, 1993; Fusco and Cronk, 1995). Consequently,
all attempts to test for significant diversification rate variation with these
tree-balance indices must grapple with the “agony of choice” between
myriad alternatives or opt to use all (or some subset of) the indices and
endure issues of multiple-test correction. In any case, interpretation of results
under the chosen index (or indices) is apt to be less than straightforward:
these indices are not derived explicitly from any model of diversification,
such that the biological meaning of “significant imbalance” under these tests
is unclear.

Our approach to the problem draws on the analogy to the study of
among-lineage substitution rate variation: just as single-node tests (as
implemented by the relative-rate test; e.g., Sarich and Wilson, 1967; Wu and
Li, 1985) have been variously generalized over the whole tree (e.g.,
Felsenstein 1988, 1989; Takezaki et al., 1995) to realize substantially
increased sensitivity to substitution-rate variation, our strategy is to
generalize single-node tests (as implemented by ERM nodal probabilities)
over the whole tree with the similar objective of increasing the power to
detect diversification rate variation. Our presentation of these whole-tree
methods necessarily draws upon our previous work (Chan and Moore, 2002)
but includes several new results, including the development of two new
statistics and a simulation-based exploration of their statistical behavior.

3.1 Whole-tree tests of diversification rate variation

Generalization of the single-node approach to incorporate information on the
relative diversity of all internal nodes of a tree would provide a much more
powerful and — by virtue of being based on an explicit model of
cladogenesis — also biologically meaningful test of among-lineage
diversification rate variation. The development of such whole-tree methods
might be achieved by combining individual ERM nodal probabilities on a
node-by-node basis over all internal nodes of a given phylogeny (J.
Slowinski, pers. comm. to Kirkpatrick and Slatkin, 1993). But how should
individual nodal probabilities be combined? A subsequent development by
Slowinski and Guyer (1993) suggests a possible solution. They proposed a
method for combining individual ERM probabilities from single-node
comparisons from many different trees using Fisher’s combined probability
test (FCPT; Fisher, 1932). It would seem relatively straightforward to
modify the FCPT protocol to combine probabilities from many nodes within
the same tree (Figure 1).
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Although intuitively appealing, the combination of nodal probabilities
under the FCPT is extremely biased. This bias stems from violation of the
underlying assumptions of omnibus statistics (i.e., statistics that, like the
FCPT, reflect the combined significance of several independent tests of a
common hypothesis). The FCPT statistic is calculated by estimating the
compound probability that a set of probabilities (in this case, the set of ERM
nodal probabilities derived with equation (1)) has a product equal to or
smaller than that of the observed set (Fisher, 1932). A less common but
equally valid omnibus statistic proposed by Edgington (ECPT: 1972a, b)
takes the sum rather than the product of individual probabilities. Both the
FCPT and ECPT assume that the individual probabilities to be combined are
independent and can realize any value on the interval (0, 1]. However, nodal
probabilities are interdependent to the extent that they are derived from
phylogenetically nested nodes and these probabilities can realize only a

Figure 1. Combining nodal probabilities to develop whole-tree tests of
diversification-rate variation. A) Slowinski and Guyer (1993) proposed combining
individual ERM nodal probabilities (derived using equation (1)), each from a different
tree, using Fisher’s combined probability test (FCPT) to test the cumulative effect of a
putative key innovation on rates of diversification in the various groups in which it
evolved independently (indicated by asterisks). B) Whole-tree tests of diversification-rate
variation could seemingly be developed by using FCPT (or ECPT) to combine the
individual ERM nodal probabilities from many nodes within the same tree (e.g.,
P1 – P10). However, the FCPT and ECPT tests assume that the individual probabilities to
be combined are independent and can each realize any value between 0 and 1. Nodal
probabilities, however, are both non-independent (e.g., P4 and P 5 are nested
phylogenetically within P3) and valued discretely (they are derived from the comparison
of discretely valued species numbers). Nevertheless, approximate solutions can be
devised that allow for the combination of nodal probabilities by using Monte Carlo
simulation to estimate the appropriate distribution of the test statistics.
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finite number of discrete values for the simple reason that they are derived
(using equation (1)) from the comparison of species diversities, which
necessarily occur as whole numbers (i.e., 1, 2, 3, …). This “discreteness”
problem is known to cause a discrepancy between the assumed and
realizable probability space (Wallis, 1942; Edgington and Haller, 1984),
such that the combination of individual nodal probabilities under the FCPT
or ECPT will assume a concave function of the true cumulative probabilities.

In view of the complications associated with the use of conventional
omnibus statistics for this problem, we pursue a non-analytical solution that
avoids the discreteness and interdependence problems while emulating the
logic of the FCPT and ECPT statistics. We first review two whole-tree tests
of diversification rate variation based on the cumulative ERM probability
derived from the product (M Π) and sum (MΣ) of individual nodal
probabilities (Chan and Moore, 2002) and then develop two modified
versions of these whole-tree statistics, MΠ* and M Σ*, that differentially
weight the individual ERM nodal probabilities according to their species
diversity. Conceptually, these four tests involve mapping the sample space
that can be realized by discretely valued, interdependent ERM nodal
probabilities. This entails the use of Monte Carlo simulation to estimate the
underlying distribution of topologies that can be realized for a tree of a given
size.

These tests are implemented with one of two algorithms depending upon
the size of the tree in question. For smaller trees (N < 20), the appropriate
ERM sample space can be mapped exactly by applying the “small-tree”
algorithm as follows: 1) Calculate the product (or sum) of all ERM nodal
probabilities (derived by equation (1)) in the observed tree. 2) Generate all
possible topologies for a tree with the same number of species as the
observed tree. For each topology, calculate the product (or sum) of its nodal
probabilities and its point probability under the ERM model. 3) Sum the
point probabilities of all topologies with nodal probability products (or
sums) less than or equal to that of the observed tree. This sum represents the
cumulative whole-tree probability based on the nodal probability product,
MΠ (or on the nodal probability sum, MΣ).

For larger trees (N > 20), the appropriate ERM sample space must be
approximated using the “large-tree” algorithm owing to the vast number of
possible topologies (e.g., only 46 for nine species, but 105 061 603 969 for
35 species; Stone and Repka, 1998). The large-tree algorithm is executed as
follows: 1) As in the small-tree algorithm, first calculate the product (or
sum) of ERM nodal probabilities in the observed tree. 2) Using the ERM
model of cladogenesis, generate a large, random subset of possible
topologies for a tree with the same number of species as the observed tree. 3)
Count the number of simulated trees with a nodal probability product (or
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sum) less than or equal to that of the observed tree and divide by the total
number of simulated trees. This quotient is an unbiased estimate of the
probability corresponding to MΠ (or MΣ).

Note that all nodal probabilities contribute equally to the calculation of
the MΠ and M Σ whole-tree statistics. However, larger nodes (i.e., those
defining more diverse clades) sample a greater number of diversification
events and should, therefore, provide more reliable evidence of non-random
variation in diversification rates (Figure 2). Accordingly, the power of the
whole-tree statistics to detect diversification rate variation should be
enhanced by scaling the weight of nodal probabilities according to the size
(i.e., species diversity) of their respective nodes. Because diversification is
an exponential process, the contribution of each nodal probability is scaled
by the natural logarithm of its diversity. The cumulative whole-tree
probability based on the product of weighted ERM nodal probabilities, MΠ

*,
involves first calculating the product of weighted ERM nodal probabilities,
Π*, for the observed tree and the set of simulated trees using the equation

(2)

€ 

Π* =

ln ni( ) ln Pi( )
i=1
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(Recall that the sum of the natural logarithms of the ERM nodal
probabilities is equivalent to taking their product.) The cumulative whole-
tree probability, MΠ

*, is simply the frequency of simulated trees with Π*
values less than that of the observed tree. Similarly, the cumulative whole-
tree probability based on the sum of weighted ERM nodal probabilities, MΣ

*,
involves calculating the sum of weighted ERM nodal probabilities, Σ*, using
the equation

(3)
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where ni is the diversity of internal node i, and Pi is its corresponding ERM
nodal probability derived using equation (1). Given two trees with the same
number of tips but different topological shapes, the more asymmetric tree
will contain a greater proportion of nodes that are relatively large compared
with the more balanced tree. Accordingly, the denominators in equations (2)
and (3) normalize the summation of ln(ni) over different tree shapes.
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3.2 The relative sensitivity to diversification rate
variation at different phylogenetic scales

Our motivation for developing the whole-tree methods described above is to
increase the statistical power of tests to detect diversification rate variation.
Power is the ability of a test to reject a null hypothesis when it is false. Nodal
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Figure 2. The ability to detect non-ERM diversification increases with tree size. The
plots were generated by initiating a stochastic ERM-branching process from a single
species with the diversification-rate parameter, λ , set initially to 1. After the first
branching event, a diversification-rate shift of magnitude A, where A ∈ {1, 2, 3, 4}, was
applied deterministically to one of the two lineages descended from the root node. The
process was terminated when trees reached size N, where N ∈ {1, 2, 3, …, 10, 15, 20, …,
40, 60, 80, 100}. Each combination of parameter settings (magnitude of diversification-
rate difference, tree size) was replicated 100 000 times, and, for each tree generated from
each such replicate, the ERM nodal probability was calculated for the root node using
equation (1). The graphs plot the mean, standard deviation, and various percentiles of the
ERM nodal probabilities (where a percentile is the ERM P-value corresponding to the
simulated tree for which x% of the set of simulated trees had lower P-values, where x ∈
{50, 80, 90, 95}). The plots within each of the four graphs (corresponding to a set of
simulations under a given value of A) are concave, with the ERM nodal probabilities for
the root node decreasing in value with increasing tree size. For a given value of A, ERM
P-values are clustered more tightly around small values for larger trees. Under a
diversification-rate difference of three, for example, we are much more likely to obtain a
P-value of < 0.1 for N = 100 than for N = 10, indicating that larger nodes provide more
reliable evidence of non-ERM diversification. Note that the apparently stochastic
wobbling of the percentile plots near the y-axis is actually a manifestation of the
“discreteness” problem. For a tree of a given size, only a finite number of discretely
valued diversity partitions can be realized; accordingly, only a finite number of P-values
can be realized by their corresponding nodal probabilities. As expected, the discreteness
problem is most pronounced for trees of small size.
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ERM probabilities are the most appropriate measure for tests of differential
diversification at individual nodes. Accordingly, we expect the combination
of these values — as implemented by the M statistics — to provide tests of
the ERM model that are exceptionally sensitive to diversification rate
variation within whole (super)trees.

Of course, the power of a test is contingent on the nature of the particular
alternative hypothesis under consideration. Because there are innumerable
possible alternatives to equiprobable diversification rates (frequent rate shifts
dispersed throughout the tree or infrequent rate shifts occurring near the base
of the tree, among others), it is unrealistic to expect any single statistic to be
maximally powerful in all scenarios involving differential diversification.
Given the multitude of possible and biologically relevant alternatives to
ERM cladogenesis, several different statistics are required. The M statistics
are intended to provide differential sensitivity to asymmetry arising at
different phylogenetic scales (i.e., the relative nodal depth in the tree),
permitting their application to a corresponding range of associated
evolutionary processes.

The manner in which each statistic summarizes information from
individual nodes (i.e., ERM probabilities) will determine the type of
diversification rate variation (i.e., the alternative hypothesis) to which it is
most sensitive. By considering how the different M statistics differentially
summarize ERM nodal probabilities, we can theoretically characterize their
differential sensitivity to different patterns of diversification rate variation
without performing the simulations necessary for a complete
characterization of their relative power.

Although MΠ and MΣ both consider the relative asymmetry of all internal
nodes, these statistics nevertheless exhibit differential sensitivity to large-
scale asymmetry. To understand the source of this difference, recall that the
potential magnitude of diversity partitions is greater at more inclusive nodes.
Consider, for example, that the most extreme diversity partition of an N-
species tree is a split of 1:(N – 1), which can only be realized at the root; the
next most extreme partition, 2:(N – 2), can only be realized at the root or at
the node just above the root, and so on. Accordingly, the most extreme nodal
probabilities (i.e., the smallest) can only be generated by large-scale
asymmetry. These extreme probabilities will have a relatively large effect on
MΠ because calculation of the statistic involves their multiplication. By
contrast, MΣ combines nodal probabilities additively, such that the impact of
such extreme probabilities is greatly diminished, allowing nodal probabilities
associated with small-scale asymmetry to make a more equable contribution
to the whole-tree probability under this statistic.
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Predictably, the behavior of the weighted whole-tree statistics, MΠ* and
MΣ*, is similar to that of their equally weighted counterparts. However,
because the contribution of each ERM nodal probability to these whole-tree
statistics is weighted by the size of its corresponding node, and because
larger nodes are realized deeper in the tree, MΠ* and MΣ* are more sensitive
to diversification rate variation at larger phylogenetic scales. Accordingly,
the relative sensitivity of the M statistics to large-scale diversification rate
variation can be approximately characterized as MΣ < MΣ*  < M Π < MΠ*
(Figure 3).

Figure 3. The differential sensitivity of the whole-tree tests to diversification-rate
variation manifested at different phylogenetic scales. Trees A and B  exhibit substantial
differences in large-scale phylogenetic asymmetry: A  has a basal split of 1:100
(P1 = 0.02, ln P1 = –3.91) versus a 25:76 split in B  (P1 = 0.5, ln P1 = –0.69). Now,
imagine that the only other difference in asymmetry between the two trees is restricted to
a five-species subtree that has a 2:3 split in A (P2 = 1.0, ln P2 = 0) and a 1:4 split in B
(P2 = 0.5, ln P2 = –0.69). The number of such asymmetric five-species subtrees that
would be required by each whole-tree statistic to identify B as more asymmetric than A
can be used to characterize their relative sensitivity to small-scale phylogenetic
asymmetry. MΣ identifies B as more asymmetric with just a single asymmetric five-
species subtree (P1A + P2A = 1.02; P1B + P2B = 1.0); MΣ* requires three or more equivalent
differences; MΠ requires five or more equivalent differences (lnP1A – lnP1B = –3.22,
lnP2A – lnP2B = 0.69); and M Π*  requires 14 or more equivalent differences. For
comparison, IC requires 25 or more equivalent differences in small-scale asymmetry,
whereas B1 identifies B as far more asymmetric than A with only a single such difference.
Thus, the sensitivity of the whole-tree statistics to diversification-rate variation occurring
at large phylogenetic scales is approximately B1 < MΣ < MΣ* < MΠ < MΠ* < IC.
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3.3 Assessing the statistical behavior of the whole-tree
statistics

We performed a simulation study to characterize the relative power of the
five whole-tree statistics (MΣ, MΣ* , MΠ, MΠ* , and MR) and two previously
proposed balance indices: IC (Colless, 1982; Heard, 1992) and B1 (Shao and
Sokal, 1990). Our decision to compare the M  statistics with these two
balance metrics is based on several considerations. IC is both the most
commonly used index (e.g., Mooers and Heard, 1997) and is also very well
characterized mathematically (e.g., Heard, 1992; Rogers 1993, 1994, 1996).
By contrast, our inclusion of B1 is motivated by the finding that it is the most
powerful of the balance indices (Kirkpatrick and Slatkin, 1993; but see
Agapow and Purvis, 2002).

The ability of the seven statistics to detect diversification rate variation
was assessed by a simulation design that involved growing trees under a
variety of non-ERM conditions intended to simulate plausible and
potentially biologically interesting models of cladogenesis. In general, trees
were grown under a continuous-time, discrete-state, stochastic branching
process in which splitting events were assumed to be both instantaneous and
dichotomous. The probability of a branching event was assumed to be
independent between tips in a growing tree, with rate shifts being equally
likely to involve an increase or a decrease in diversification rate. If no rate
shift occurred, a given tip retained the diversification rate of its ancestor.

Diversification rate shifts were applied under three general models of
cladogenesis. Under the gradualist model, rate shifts could occur at any
instant in time and were inherited by both daughter species. Alternatively,
two different punctuated models constrained rate shifts to occur at speciation
events, with either one or both daughter species having a chance of
experiencing a rate shift. For each evolutionary model, we explored the
effects of varying the frequency and magnitude of rate shifts in trees of
various sizes. Average diversification rate shift values, λ, included two-,
four-, eight-, and 16-fold increases in diversification rate, which were
applied under a range of frequencies (0.01, 0.1, 0.2, 0.3, 0.4, 0.5). The
branching process was terminated when trees reached the desired size, N,
where N ∈ {10, 15, 20, 25, 30, 35, 40, 60, 80, 100}. Every permutation of
the set of simulation parameters (evolutionary model, rate distribution, tree
size, and frequency and magnitude of rate shifts) was replicated 100 000
times, calculating the value for each of seven statistics for each tree
generated from each replicate. Power was calculated as the proportion of the
replicates in which the null hypothesis of no among-lineage diversification
rate variation was correctly rejected at the conventional α = 0.05.
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Several results of the simulation study were as predicted. First, the use of
Monte Carlo simulation to assess significance of the various whole-tree
statistics ensured appropriate Type I error rates. The plots for each statistic
intersected the y-axes at P ≅ 0.05 (the nominal level of α) when the average
diversification rate shift, λ, was 1 (i.e., when the null hypothesis was true).
Second, the power of the whole-tree statistics to detect diversification rate
variation consistently scaled with tree size (Figure 4). This result is
consistent both with theoretical expectations (Figure 2) and findings of
previous simulation studies (e.g., Kirkpatrick and Slatkin, 1993; Kubo and
Iwasa, 1995; Paradis, 1997, 1998a, b; Agapow and Purvis, 2002) and
emphasizes the potential of typically large supertrees to facilitate the study
of diversification rate variation. Finally, the observed behavior of the various
whole-tree statistics under various rate-shift parameterizations was also
unsurprising: power predictably scaled with increases in both the frequency
and magnitude of rate shifts applied.

Somewhat more surprising was the response of some whole-tree statistics
to various combinations of frequency and magnitude of diversification rate
shifts. For instance, we might expect that simulations involving large shifts
occurring at low frequencies would enhance the relative power of the MR

statistic given its inherent sensitivity to large-scale diversification rate
variation. Similarly, we might predict that the relative performance of the MΣ

or B1 statistics would be enhanced under conditions involving shifts of small
magnitude occurring at relatively high frequencies. Curiously, and despite
their rather compelling theoretical basis, no unambiguous patterns
supporting these behaviors emerged from the simulation study. A thorough
consideration of such intriguing anomalies is beyond the scope of the present
analysis but will be treated elsewhere (Moore and Chan, in prep.).
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Figure 4. The effect of tree size on the power of several whole-tree methods to detect
diversification-rate variation.
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Perhaps one of the more interesting findings to emerge from the
simulation study was the pronounced effect of the model of diversification
on the relative power of the whole-tree methods to detect diversification rate
variation. Figure 5 depicts the results for 100-species trees grown under one
of three diversification models with rate shifts of various magnitude applied
with a constant frequency of 0.1, which were sampled from a uniform rate-
shift distribution. Overall, the power of all the statistics tended to be greatest
under the Punctuated 2 Model, in which rate shifts were constrained to occur
at speciation events with any change in rate inherited by both daughter
species (Figure 5, lower graph). By contrast, power was noticeably lower
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Figure 5. The effects of evolutionary model on the power of several whole-tree
methods to detect diversification-rate variation.
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under the Gradual Model, in which rate shifts were free to occur at any time
with any change in rate shared between both daughter species (Figure 5,
upper graph). Finally, power was intermediate under the Punctuated 1
Model, in which only one of the descendent species inherited any change in
rate (Figure 5, middle graph). Nevertheless, the absolute power of the
methods was fairly high even under conditions least favorable to the whole-
tree statistics (e.g., two of the statistics, MΠ*  and IC, detected a four-fold
variation in diversification rates correctly about 50% of the time under the
Gradual Model at a very low diversification rate shift frequency).

The conditional nature of conclusions regarding the statistical power of
these tests should be emphasized. Despite this caveat, several generalities
held over a wide range of the considerable parameter space we explored.
Apart from a limited number of extreme conditions, the performance of the
MR and B1 statistics was uniformly poor. Given its widely accepted status as
the most powerful statistic (based on the particular conditions simulated by
Kirkpatrick and Slatkin, 1993), the poor performance of B1 was somewhat
surprising. By contrast, the MΠ* statistic consistently exhibited maximal (or
nearly maximal) power under the vast majority of the simulations.

3.4 Detecting diversification rate variation in primates

The whole-tree M  statistics described above were used to assess
diversification rate variation in a published supertree of primates (Purvis,
1995). Because these data were analyzed for illustrative purposes only, no
attempt was made to account for the effect of phylogenetic uncertainty on
the results (e.g., Donoghue and Ackerly, 1996; Huelsenbeck et al., 2000b).
In addition to analyzing the complete primate tree, we also performed
analyses on several clades of primates to facilitate comparison both with the
findings of previous temporal studies of diversification rate variation in this
group (Purvis et al., 1995) and also with results presented in Section 4.3.
Note that inference of diversification rate variation in these clades is
somewhat confounded: shifts within more nested clades will influence
estimates obtained for more inclusive clades. Accordingly, these results
should be interpreted cautiously (Purvis et al., 1995). Results derived with
the whole-tree methods were compared again with those of the tree-shape
indices IC and B1. All analyses were performed with SYMMETREE, with
relevant details and results summarized in Table 1.

Three general findings merit comment. First, the primate tree contains
203 species and is ~80% resolved, illustrating the ability of the whole-tree
methods (and their implementation in SYMMETREE) to contend with
moderately large and incompletely resolved trees. Second, analysis of the
entire primate clade failed to detect significant among-lineage diversification
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rate variation. However, significant diversification rate variation was
detected in separate analyses of both hominoids and Old World monkeys.
These findings are largely consistent with those reported by Purvis et al.
(1995), who detected diversification rate variation within both of these
clades using temporal methods. Finally, close inspection of the P-values for
the various whole-tree statistics supports their predicted behavior with
respect to diversification rate variation manifest at different phylogenetic
scales. The statistics in Table 1 are arranged by their predicted sensitivity to
large-scale diversification rate variation (i.e., in the order B1 < MΣ < MΣ* <
MΠ < MΠ* < IC). Looking across a row for any group reveals a trend in the P-
values; for example, the probabilities for Old World monkeys tend to
decrease from B1 to MΠ and then increase from MΠ*  to IC (with some
shuffling of the order of the statistics resulting from differences in the their
absolute power under the particular manner in which the null hypothesis was
violated in these data). The most extreme P-value (i.e., the smallest)
obtained for this clade was returned by MΠ, suggesting that diversification

Table 1. Probability values corresponding to tests of ERM cladogenesis in various
primate clades as derived by Monte Carlo simulation of the null distribution for each
statistic.  All results were obtained using the SYMMETREE program. The null distribution
for each statistic was generated with a sample of 100 000 ERM topologies for each tree
size.  Uncertainty associated with polytomies was assessed by generating 100 000 random
resolutions under the size-sensitive ERM taxon-addition algorithm, providing the upper
and lower bounds of the confidence interval.  These bounds, the “high” and “low” values
(for high and low asymmetry), correspond to the tail probabilities for the .025 and .975
frequentiles, respectively.  Note that the sensitivity of the whole-tree statistics to large-
scale diversification rate variation increases to the right across a given row (i.e., B1 < MΣ

< MΣ* < MΠ < MΠ* < IC). Percent resolution was calculated as k / (N – 1), where k is the
number of nodes in a tree of N species; this value assumes implicitly that the underlying
phylogeny is strictly dichotomous (i.e., that all polytomies are “soft”; sensu Maddison,
1989).

B1 MΣ MΣ* MΠ MΠ* IC

taxon
tree
size

resolution
high
low

high
low

high
low

high
low

high
low

high
low

0.00020 0.00414 0.04097 0.00468 0.04004 0.21772
all primates 203 79

0.09481 0.18733 0.30751 0.12587 0.20208 0.32138
0.00074 0.00507 0.01956 0.01063 0.04627 0.05123

hominoids 14 85
0.01481 0.03833 0.08997 0.07831 0.17608 0.18630
0.14391 0.12380 0.12380 0.24500 0.48850 0.67694

strepsirhines 39 82
0.77485 0.67503 0.33586 0.71871 0.82819 0.89569
0.01541 0.32875 0.65913 0.44013 0.65815 0.78990New World

monkeys
65 72

0.73206 0.97304 0.98205 0.96326 0.96834 0.95474
0.00168 0.00134 0.00473 0.00045 0.00384 0.13364Old World

monkeys
80 81

0.18815 0.09342 0.08558 0.02488 0.03825 0.30341
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rate variation in the Old World monkey tree likely occurred at an
intermediate phylogenetic scale.

4. Locating shifts in diversification rate

Having provided a means with which to answer the question, “Has a given
tree experienced significant diversification rate variation among its
branches?” in the preceding section, we now address its inevitable sequel:
“Where have significant shifts in diversification rate occurred in this tree?”
Despite its obvious biological significance, this problem has received
remarkably little attention (however, Nee et al. (1992, 1994b, 1996)
developed an approach incorporating temporal information that has been
applied to this problem, which we consider in some detail below). By
contrast, considerable attention has focused on methods to test hypotheses
that specify the location and direction of diversification rate shifts (i.e., “key-
innovation” hypotheses3). Fortunately, several developments in this
hypothesis-testing realm are directly relevant to the issue of localizing shifts
in diversification rate. Of particular importance is the iterative maximum
likelihood model-fitting approach proposed by Sanderson and Donoghue
(1994; see also Sanderson and Bharathan, 1993; Sanderson, 1994; Sanderson
and Wojciechowski, 1996).

Following Sanderson and Donoghue (1994), our approach to detecting
shifts in diversification rate is developed in a likelihood framework that
evaluates the relative fit of models with one or more rate parameters
distributed over different parts of a three-taxon tree and assumes an
underlying ERM (Yule) branching process. However, our implementation is
both significantly simplified (we evaluate only one- and two-rate parameter
models and do not integrate their likelihood over all internal branching
times) and also substantially generalized (we iterate three-taxon evaluations
over all internal branches to survey the whole tree for diversification rate
shifts).

In outline, the basic goal is to assess the probability of a shift along the
lone internal branch of a given three-taxon tree comprising an outgroup
clade and the two basal-most subclades of the ingroup clade. The probability
of a diversification rate shift along the internal branch is returned by a shift

3 Although related, these inference problems are nevertheless distinct. The evaluation of key innovations
entails a hypothesis-testing framework in which the location and direction of a diversification rate shift
is specified by the hypothesis under consideration (without any knowledge that the tree exhibits
significant among-lineage diversification rate variation). By contrast, the search for significant shifts in
diversification rate entails a data-exploration framework in which only the existence of significant
among-lineage diversification rate variation is specified (without any knowledge of the location or
direction of the associated rate shifts).
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statistic, which is calculated as a function of two likelihood ratios. One
likelihood ratio is calculated at the root of the three-taxon tree (involving the
diversity partition between the outgroup and ingroup clades), the other at the
root of the ingroup clade (involving the diversity partition between the left
and right ingroup clades). Each likelihood ratio compares the likelihood of
realizing the observed diversity partition between the two sister clades under
a homogeneous (one-rate parameter) model (in which both groups have the
same branching rate) versus that under a heterogeneous (two-rate parameter)
model (in which the two groups have different branching rates). Different
shift statistics can be developed by variously combining information from
the resulting inclusive and nested likelihood ratios. Before explicitly
deriving these shift statistics, we first review both the details of calculating
the likelihoods under one- and two-rate parameter models and also the
means of assessing their relative fit to the data using the likelihood ratio.

If the ERM branching process is initiated with a single species and
allowed to run for a period of time, t, with a branching probability, λ , the
likelihood of realizing N species is (Harris, 1964)

(4)

€ 

P(N | λ,t) = e−λt 1− e−λt( )
N−1

.

Accordingly, the likelihood of realizing N species partitioned between the
left and right descendents of a single node (with l and r species, respectively)
under a uniform branching probability after time, t, is

(5a)

  

€ 

P l ,r |HO( ) =
P l | λ,t( )P r | λ,t( )

P i | λ,t( )P N − i | λ,t( )
i=1

N−1

∑
.

The Markov property of the ERM branching process allows the
probabilities for different parts of the tree (such as the two terms in the
numerator) to be multiplied. Substituting the expression from equation (4)
with t = 1 gives the following expansion

(5b)

  

€ 

P l ,r |HO( ) =
e−λ 1− e−λ( )

l −1( ) e−λ 1− e−λ( )
r−1( )

e−λ 1− e−λ( )
i−1( ) e−λ 1− e−λ( )

N− i−1( )
i=1

N−1

∑
.

This equation provides the likelihood of observing a partition of l and r
species (where l + r = N ) under HO, the homogeneous, one-rate parameter
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model. Similarly, the likelihood of observing a partition of l and r species
under the heterogeneous, two-rate parameter model, HA, is

(6a)

  

€ 

P l ,r |HA( ) =
P l | λl , t( )P r | λr,t( )

P i | λl ,t( )P N − i | λr,t( )
i=1

N−1

∑
.

Again, substituting the expression from equation (4) with t = 1 gives the
expansion

(6b)

  

€ 

P l ,r |HA( ) =
e−λl 1− e−λl( )

l −1( ) e−λr 1− e−λr( )
r−1( )

e−λl 1− e−λl( )
i−1( ) e−λr 1− e−λr( )

N− i−1( )
i=1

N−1

∑
,

The denominators in equations (5) and (6) normalize their respective
probabilities by defining the relevant probability space. Specifically, this
pertains to the sum of the products for all possible partitions of N into l and r
species.

The relative fit of the one- and two-rate parameter models to the observed
diversity partition is assessed by the difference in the natural logarithm of
their respective likelihood values: the log-likelihood ratio (hereafter, simply
“likelihood ratio”) of the homogeneous and heterogeneous diversification
rate models, LRHA:HO, is, therefore, calculated as

(7)
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LRHA :HO
= ln P l | λl , t( )P r | λr,t( )

P ni | λl ,t( )P N − ni | λr,t( )
i=1
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As the value of likelihood ratio increases, the evidence increasingly
favors acceptance of the heterogeneous model in which the left and right
descendants of the node in question diversified under two distinctly different
rates, λl and λr, respectively.

4.1 Presentation of the shift statistics

Having detailed the calculation of likelihoods under the homogeneous and
heterogeneous models (and their relative fit with the likelihood ratio), we
now have the necessary tools to construct tests to locate significant shifts in
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diversification rate. Consider a pair of sister taxa, L and R, with l and r
species, respectively (where l < r). After calculating the likelihood of
realizing a partition of l and r species under both the homogeneous and
heterogeneous models, we then calculate the difference in their log
likelihoods (i.e., the likelihood ratio of HA:HO). The discovery of a large
likelihood ratio would provide evidence that L and R diversified under two
distinctly different rates, λL and λR, respectively. We might interpret this as
evidence of an increase in diversification rate along the internal branch
leading to R (i.e., the stem branch subtending the R clade; sensu Doyle and
Donoghue, 1993; Magallón and Sanderson, 2001). However, this
interpretation relies on several assumptions, including the key assumption
that the diversity of the more diverse group, R, was achieved stochastically
under a constant rate, λ R (e.g., Rakiow, 1986; Sanderson and Donoghue,
1996)4. It is possible that an apparent shift in rate along the branch leading to
R could be an artifact of a rate shift that occurred within R. This “trickle-
down” problem occurs because a bona fide increase in diversification rate
along a given internal branch will exert an influence on diversity
comparisons made at more inclusive nodes. Accordingly, a local shift in rate
is effectively conducted down the tree, creating the illusion of local rate
shifts at neighboring internal branches (see Figure 6).

To discriminate between such illusory and real rate shifts, therefore, we
must expand the scope of our evaluation to incorporate information not only
from the node subtended by L and R but also from the root node of R .
Evaluation of these two hierarchically nested nodes thus entails a three-taxon
framework comprising an outgroup clade and the two basal subclades that

4 The other key assumption concerns the inferred direction of the shift in rate: as two-taxon statements,
sister-group comparisons are inherently non-directional (e.g., Jensen, 1990; Doyle and Donoghue, 1993;
Sanderson and Bharathan, 1993; Sanderson and Donoghue, 1994, 1996; Sanderson and Wojciechowski,
1996). In other words, the observation that clade R contains significantly more species than its sister
group, L, can be explained by postulating either a rate increase in R and/or a rate decrease in L. In
principle, increases and decreases in diversification rate are likely to have occurred with equal
frequency throughout evolutionary history. Nevertheless, our method ignores shifts associated with
significant decreases in diversification rate because the detection of such events on the basis of extant
diversity is highly problematic given the associated loss of relevant phylogenetic information. That is,
while we do not deny the existence of significant decreases in diversification rate, we are unlikely to
detect these events because their occurrence effectively ensures the erasure of the evolutionary history
necessary for their discovery. The probability that an entire clade will go extinct is governed by the
relative extinction rate, ε, which is simply the extinction rate divided by the speciation rate (e.g.,
Kendal, 1948; Harris, 1964; Nee et al., 1994b; Magallón and Sanderson, 2001). As ε increases, it
becomes increasingly likely that a clade will perish before the present; when ε ≥ 1, the probability of
complete extinction is one. Evidence from the fossil record suggests that ε has historically been quite
high for most groups (e.g., Stanley, 1979; Hulbert, 1993). Recall that a significant decrease in the net
diversification rate, λ, entails a significant decrease in speciation rate and/or a significant increase in
extinction rate. Such a decrease in λ will therefore cause a corresponding increase in ε, which will
greatly increase the probability that the clade will go extinct before the present. Accordingly, if a
significant decrease in rate actually occurred in a given group, there would likely be no record of such
an event in the relationships among extant species.
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together form the ingroup. In outline, the likelihood of a shift along the
internal branch of the three-taxon tree (which is based on the likelihood ratio
for the observed diversity partition between the outgroup and ingroup
clades) must be conditioned by the likelihood of a rate shift within the
ingroup (which is based on the likelihood ratio for the observed diversity
partition between the left and right ingroup clades). There are many ways
one might conceive of conditioning the inclusive likelihood ratio by the
nested likelihood ratio, each variant corresponding to a different likelihood
ratio–based shift statistic. Indeed, many shift statistics could be imagined
that are based on expressions of the data other than their likelihood ratio. In
fact, we have developed and experimented with several such alternative shift
statistics (see below). Nevertheless, we focus on two shift statistics based on
nested likelihood ratios because of their advantageous statistical properties.

The first shift statistic, ∆1, simply takes the difference in likelihood ratios
under the homogeneous and heterogeneous models assessed at the inclusive
and nested nodes. It is calculated as

(8)

€ 

Δ1 = LRHA :HO
nOG : nIG( ) − LRHA :HO

nIG L
: nIG R( ) ,

Figure 6. Locating significant shifts in diversification rate in the context of a three-
taxon tree. Note that the tree has been rendered in left-light rooting order (Furnas, 1984),
such that the more diverse clade is swiveled to the right of every node. Detection of a
rate shift along the internal or target branch entails calculation and evaluation of
likelihood ratios under the homogeneous and heterogeneous models, LRHA:HO, at both the
inclusive and nested nodes. The fit of the heterogeneous model to an observed diversity
partition at a given node increases with the value of the likelihood ratio. Inspection of the
inclusive and nested likelihood ratios entails one of four possible interpretations.
Scenarios 1 and 2 indicate that no rate shift occurred along the target branch (although
scenario 2 is consistent with a rate shift within the ingroup, which will be assessed as the
three-taxon evaluation is iterated up the tree). By contrast, the large likelihood ratios at
the inclusive nodes in scenarios 3 and 4 suggest that a rate shift might have occurred
along the target branch. In scenario 4, however, the large value of the nested likelihood
ratio suggests that rates within the ingroup are significantly heterogeneous. Accordingly,
the apparent rate shift along the target branch is likely an artifact of a subsequent rate
shift within the ingroup. Thus, scenario 3 represents a bona fide rate shift along the target
branch, whereas scenario 4 illustrates the “trickle-down” problem.
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where ni is the number of species in group i, and LRHA:HOni:nj is the likelihood
ratio of observing a diversity partition ni:nj under the homogeneous and
heterogeneous models derived using equation (7). The idea is to condition
the evidence for a shift at the inclusive node (as reflected by the likelihood
ratio of the observed diversity partition between the ingroup and outgroup
clades, nOG:nIG) by the evidence of a shift at the nested node (as reflected by
the likelihood ratio of the observed diversity partition between the left and
right ingroup clades, n IGL:nIGR), thereby reducing the probability of
erroneously attributing a local rate shift to the internal branch because of a
rate shift within the ingroup clade.

The second shift statistic, ∆2, is more complicated. Rather than
conditioning the inclusive likelihood ratio on the nested likelihood ratio, it
attempts to adjust the ingroup diversity used in calculating the inclusive
likelihood ratio. The adjusted ingroup diversity excludes the number of
ingroup species that can be attributed to a rate increase along the internal
branch. This value is calculated as the total ingroup diversity minus the
product of the probability of a rate shift at the internal branch, multiplied by
the number of species attributable to that shift. The ∆2 shift statistic is
expressed as

(9a)

€ 

Δ 2 = LRHA :HO
nOG : nIG*( ) ,

where

(9b)
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IG* = nIG −
LRHA :HO

nIGL
: nIGR( )

LRHA :HO
nIGL

: nIGR( ) +1

 

 
 
 

 

 
 
 nIG −max nOG,2nIGL( )( ) .

The second term in equation (9b) constrains the adjusted ingroup
diversity to assume the larger of two values: the outgroup diversity or two
times the diversity of the less diverse (left) ingroup clade. This constraint is
imposed to avoid overcorrecting the ingroup diversity in cases for which
there is little evidence of a shift along the internal branch. The ERM P-
values associated with the shift statistics ∆1 and ∆2 are assessed by numerical
analysis: the cumulative probability of obtaining a shift statistic value as or
more extreme than that derived for the observed tree (using equation (8) or
(9)) is calculated using the statistic value for the observed topology and the
known probabilities of different topologies under the ERM model.
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4.2 Assessing the statistical behavior of the shift statistics

We performed a simulation study to explore the behavior of several shift
statistics using a simple experimental design in which a rate shift was
applied to either the inclusive and/or nested node of a three-taxon tree. The
power and bias of the various shift statistics were assessed by their
respective abilities to correctly or incorrectly reject the null hypothesis that
no rate shift occurred along the internal (target) branch. Specifically, trees
were generated under an ERM branching process initiated from a single
species with the branching rate parameter, λ, set to 1. During the growth of a
simulated tree, a diversification rate shift of a specified magnitude A, where
A ∈ {2, 4, 6}, occurred deterministically under three different treatments: 1)
a shift was applied to the inclusive node (i.e., occurring immediately after
the first branching event); 2) a shift was applied to the nested node (i.e.,
occurring immediately after the first branching event within the ingroup); or
3) a shift was applied both to the inclusive and nested nodes (i.e., occurring
immediately after the first and second branching events). The process was
terminated when the trees reached the desired size, N, where N ∈ {100, 200,
400}. Every permutation of the set of simulation parameters (tree size,
magnitude of rate shifts, and location of rate shifts) was replicated 10 000
times, calculating the value for each of seven shift statistics for each tree
generated from each replicate. Power and Type I error rates were calculated
as the proportion of the replicates in which the null hypothesis of no rate
shift along the target branch was correctly or incorrectly rejected,
respectively.

We compared the performance of our two likelihood ratio statistics, ∆1

and ∆2, to one existing and four other new shift statistics:

1. NP , the ERM nodal probability proposed by Slowinski and Guyer
(1989a, b) was calculated for the inclusive node using equation (1).

2. ∆ N, calculated as the difference in “raw” diversity contrasts at the
inclusive and nested nodes; that is, ∆N = ((nIG – nOG) – (nIGR – nIGL)).

3. ∆R, calculated as the difference in diversification rate contrasts at the
inclusive and nested nodes, where the maximum likelihood estimates of
diversification rates are calculated as 

€ 

ˆ λ  = (ln(n ) )–1 (Sanderson and
Donoghue, 1996); accordingly, ∆R = ((

€ 

ˆ λ IG – 

€ 

ˆ λ OG) – (

€ 

ˆ λ IGR – 

€ 

ˆ λ IGL)).
4. ∆NP, calculated as the difference in the two ERM nodal probabilities

calculated at the inclusive and nested nodes, which is somewhat similar
to the procedure outlined by Nee and Harvey (1994; see also Nee et al.,
1996; Mayhew, 2002).

5. ∆1*ω, calculated as for ∆1, but incorporates a scaling parameter, ω, that
weights the contribution of the nested likelihood ratio (the second term in
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equation (8)) to the shift statistic; accordingly, ω effectively indexes an
infinite array of shift statistics, where ∆1*ω is identical to ∆1 when ω = 1).

The upper graph in Figure 7 illustrates the ability of the shift statistics to
detect diversification rate shifts of various magnitudes along the internal
branch. These conditions correspond to the idealized case in which
potentially confounding diversification rate shifts elsewhere in the tree have
not occurred. The plots for each statistic intersect the y-axis at P ≅ 0.05 (the
nominal level of α) where the diversification rate is raised by a factor of 1,
indicating appropriate Type I error rates when the null hypothesis is true (as
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Figure 7. Results of a simulation study of the relative power and bias of several shift
statistics in the three-taxon case. The locations of diversification rate shifts in the three-
taxon trees are indicated as shaded branches (see text for details).
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expected under Monte Carlo simulation). For 100-species trees, the
likelihood ratio–based shift statistics exhibit the greatest relative power,
successfully detecting a four-fold rate increase in ~50% of the replicates, and
a six-fold rate increase in ~65% of the replicates. The ∆1*0.5 statistic slightly
outperforms ∆2, which in turn slightly outperforms ∆1. All three likelihood
ratio–based shift statistics enjoy an edge in power over Slowinski and
Guyer’s (1989a, b) NP, which is expected since these ∆ statistics possess
greater resolution by virtue of incorporating more information. The other
shift statistics, ∆R, ∆NP, and ∆N, exhibit substantially lower power.

The middle graph in Figure 7 illustrates the bias of the various shift
statistics associated with a diversification rate shift of various magnitudes
within the ingroup (specifically, along the branch subtending the right
ingroup clade). This simulation therefore assesses the relative sensitivity of
the various shift statistics to the trickle-down problem. Because no rate
increase occurs along the target branch, a completely unbiased statistic
should exhibit a flat probability of rejecting the null hypothesis of ~0.05. As
expected, NP is extremely biased, rejecting the null hypothesis almost as
frequently as when a rate increase actually occurred at the target node
(compare the plots for NP in the upper and middle graphs). The likelihood
ratio–based shift statistics fare substantially better, exhibiting Type I error
rates ranging between 10–20% under a four-fold rate increase within the
ingroup and between 8–21% under a six-fold rate increase within the
ingroup. Not surprisingly, the Type I error rates of the three likelihood
ratio–based shift statistics mirror their relative power in the upper graph.
Accordingly, the slight edge in power exhibited by ∆1*0.5 translates into
greater bias. The other two likelihood ratio–based shift statistics exhibited
relatively low bias, with ∆1 consistently outperforming ∆2. The remaining
shift statistics, ∆R, ∆NP, and ∆N, are substantially more conservative.

The lower graph in Figure 7 illustrates the ability of the shift statistics to
detect a doubling in diversification rate along the internal (target) branch
given a subsequent rate shift of varying magnitude within the ingroup clade.
This simulation therefore assesses the power of the shift statistics in cases
where the trickle-down problem applies. Because a doubling in rate is
uniformly applied to the internal branch, the plot for each shift statistic
intersects the y-axis at the ordinate value corresponding to its respective
power under a two-fold rate increase in the upper graph. Note that, because a
two-fold rate increase is consistently applied to the target node, a perfectly
unbiased shift statistic would exhibit a flat power curve over the range of
rate increases applied within the ingroup clade. Not surprisingly, NP exhibits
the highest power under this scenario because shifts within the ingroup
contribute to rejection of the null hypothesis; that is, it does a “good” job,
albeit for the wrong reasons. The power plots for the likelihood ratio–based
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shift statistics are substantially flatter, their rank order remaining unchanged:
∆1 < ∆2 < ∆1*0.5. Because none of these ∆ shift statistics perfectly condition
the inclusive likelihood ratio by the nested likelihood ratio, their power
might be inflated slightly by a rate shift within the ingroup clade. Under
these conditions, the ∆1 ∆2, and ∆1*0.5 statistics appear to slightly
undercondition the inclusive by the nested likelihood ratio. This behavior
can be seen by comparing the plots of ∆1*0.5 and ∆1. Because ∆1*0.5 applies a
relatively small penalty to the inclusive likelihood ratio when a rate shift
occurs at the nested node, its power is consequently more inflated than that
of ∆1. Interestingly, the bias of ∆1 and ∆2 appears to decrease as the
magnitude of the rate shift at the nested node increases. The remaining shift
statistics, ∆R, ∆NP, and ∆N, appear to overcompensate for rate shifts within the
ingroup, such that their power to detect a rate shift at the target node rapidly
diminishes with increasing magnitude of rate shifts at the nested node.

The performance of the various shift statistics under a range of tree sizes
is illustrated in Figure 8. These simulations uniformly applied a four-fold
diversification rate shift to the internal branch of trees with 100 to 400 tips, a
size range reflecting that of supertrees in the literature (e.g., Purvis, 1995;
Bininda-Emonds et al., 1999; Wojciechowski et al. 2000; Jones et al., 2002;
Kennedy and Page, 2002; Salamin et al., 2002; Stoner et al., 2003).
Although the power of the shift statistics generally scale with tree size, the
increase in power was not realized uniformly by the various tests. The
likelihood ratio–based shift statistics, ∆1, ∆2, and ∆1*0.5, exhibited the greatest
proportional increase in power as tree size increased; by contrast, the power
of the ∆N and ∆NP statistics was essentially flat across the range of tree sizes
simulated, whereas ∆R exhibited an intermediate increase in relative power.
Under the range of tree sizes evaluated, the likelihood ratio–based shift
statistics consistently exhibited the greatest (and quite similar) absolute
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Figure 8. The effect of tree size on the power of several shift statistics to detect
significant diversification rate shifts (see text for details).
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power, accurately identifying a four-fold diversification rate shift ~60% and
~80% of the time in trees with 200 and 400 tips, respectively. Interestingly,
although the bias of the ∆1*0.5 shift statistic increased with tree size, the Type
I error rates for the ∆1 and ∆2 statistics decreased slightly with tree size (not
shown). The results discussed above (and illustrated in Figures 7 and 8) were
obtained using the three-taxon simulation design; however, we also
performed a more elaborate, whole-tree simulation study that allowed rate
shifts of various frequency and magnitude to be applied to all the internal
branches of simulated trees of various sizes. Results of this more
sophisticated study (not shown) were similar qualitatively to those reported
for the simpler investigation.

4.3 Locating diversification rate shifts in primates

We used the ∆ shift statistics to locate significant diversification rate shifts in
the primate supertree published by Purvis (1995). As in the previous analysis
of diversification rate variation using the whole-tree statistics, this analysis is
intended for illustrative and comparative purposes only. Accordingly, we
made no attempt to account for the effects of phylogenetic error. Results for
the two likelihood ratio–based shift statistics, ∆1 and ∆2, were obtained using
the SYMMETREE program. Polytomies were treated by generating 1000
random resolutions using the size-sensitive ERM taxon-addition algorithm,
providing an estimate of the confidence intervals for P-values associated
with each shift statistic. As before, analyses were performed on both the
entire primate tree and several of its component clades (e.g., strepsirhines,
New World monkeys, colobines, cercopithecines, and hominoids). After
summarizing the findings of our analysis, we describe the methods used in a
previous investigation of diversification rate shifts in the primate tree (Purvis
et al., 1995), comparing and contrasting the results obtained by these two
studies.

Our analysis using the ∆1 and ∆2 statistics detected seven diversification
rate shifts in the primate tree. Significant rate shifts (Figure 9; bold black
branches) were detected at the base of haplorhines (along branch 1, the root
of a clade comprising New World monkeys, Old World monkeys, and
hominoids), within New World monkeys (along branch 4, the root of a clade
comprising Callithrix, Cebuella, Leontopithecus, and Saguinus), and within
Old World monkeys (along branch 7, the root of a clade comprising all
Presbytis species except P. entellus). Additionally, several marginally
significant rate shifts (Figure 9; bold gray branches) were detected, including
two shifts within the Old World monkey clade (the first along branch 5, the
root of a clade comprising Macaca arctoides, M. assamensis, M. cyclopis,
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M . fascicularis, M . fuscata, M . mulatta, M . radiata, M . sinica, and M .
thibetana; and the second shift along branch 6, the root of a clade
comprising all Cercopithecus species except C. aethiops and C. solatus) and
two within strepsirhines (the first along branch 2, the root of a clade

Figure 9. Location of inferred diversification rate shifts in the primate supertree of
Purvis (1995). The tree at left depicts results from a previous study by Purvis et al.
(1995) that identified diversification-rate shifts using the relative-cladogenesis statistic
(to identify anomalously diverse lineages) coupled with a parsimony optimization
scheme: all 32 diversification-rate shifts are shown, including 23 from the simultaneous
analysis of the entire tree and an additional nine non-redundant shifts from the analyses
of the five component clades. The tree at right depicts diversification rate shifts
identified using the ∆ shift statistics. Results obtained under the two approaches are
somewhat correspondent: five of the diversification rate shifts identified by the ∆ shift
statistics are among those identified in the previous study. However, several nested shifts
within Old World monkeys (i.e., those involving Macaca, Cercopithecus, Presbytis at
branches 5, 6, and 7, respectively) caused a cascade of spurious diversification-rate shifts
to be identified at more inclusive nodes throughout the anthropoid clade owing to the
trickle-down problem. Bold black branches correspond to significant rate shifts and bold
gray branches to marginally significant rate shifts; branches marked with an asterisk
identify results involving random resolution of polytomies; numbered branches
correspond to clades identified in the text.
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comprising Lemur, Hapalemur, and Eulemur; and the second shift along
branch 3, the root of a clade comprising Galago, Galagoides, Otolemur, and
Euoticus). Interestingly, the diversification rate shift along branch 2 was
independently identified as a significant radiation in a recent study by Yoder
and Yang (in press), which estimated divergence times from several
unlinked loci and external fossil calibrations using Bayesian methods.

Several aspects of these findings warrant comment. First, three of the
diversification rate shifts were associated with polytomies (i.e., those in
Macaca, Presbytis, and the Callithrix-Saguinus  clades; Figure 9),
demonstrating the applicability of these methods to incompletely resolved
(super)trees. Second, in contrast to our previous analysis of diversification
rate variation using the whole-tree M statistics, results obtained using the ∆
shift statistics were insensitive to the specification of taxonomic scope,
returning the same P-values for the same set of branches regardless of
whether the analysis was applied simultaneously to the entire tree or
separately to its component clades. Third, the results of the whole-tree M
statistics and ∆ shift statistics are not perfectly correspondent. Specifically,
the ∆ shift statistics failed to locate significant diversification rate shifts
within several clades in which significant among-lineage diversification rate
variation had previously been identified by the whole-tree M statistics. In
these cases, diversification rate variation appears to be rather evenly
dispersed across the tree such that, although cumulatively significant under
the whole-tree M statistics, it is nevertheless insufficiently concentrated
along any one branch (or small number of branches) to constitute a
significant diversification rate shift under the ∆ shift statistics. For example,
the topology of the hominoid clade is largely pectinate, indicating significant
heterogeneity in diversification rate among its branches. Nevertheless,
evaluating the probability of a diversification rate shift along any particular
branch is likely to involve a diversity partition of 1:(N – 1) at the inclusive
node and 1:(N – 2) at the nested node, which is much more consistent with a
trickle down in rates than a local shift in rate under the ∆ shift statistics.
Finally and conversely, significant diversification rate shifts were located
within clades for which the whole-tree statistics had previously failed to
detect significant among-lineage diversification rate variation. In these cases,
diversification rate heterogeneity was largely restricted to a single branch (or
small number of branches), constituting a significant local rate shift that was
nevertheless below the threshold of detection under the whole-tree M
statistics. For example, the New World monkey clade is, overall, very
balanced: diversity partitions at most nodes in this tree involve splits of
approximately (N / 2):(N / 2). The single prominent exception involves the
node at which a rate shift was located (branch 4 in Figure 9), which by itself
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was insufficient to cause rejection of the null hypothesis that the whole New
World monkey clade diversified under a stochastic ERM branching model.

4.3.1 The relative cladogenesis statistic: potential limitations and
comparison to the ∆ shift statistics

The location of diversification rate shifts in the primate supertree was
previously studied by Purvis et al. (1995) using an approach referred to as
the “relative cladogenesis statistic,” originally described in Nee et al. (1992,
1994b, 1994b) and subsequently in Harvey and Nee (1993, 1994), Nee and
Harvey (1994), and Nee et al. (1994a, 1995, 1996). Like the whole-tree
statistics described previously, the relative cladogenesis statistic was
originally intended to detect significant diversification rate variation among
a set of lineages. In contrast to our strictly topology-based whole-tree
statistics, however, the relative cladogenesis statistic relies on temporal
information to circumscribe the set of lineages involved in the test. That is,
given a phylogeny with estimated divergence times, we can arbitrarily draw
a line through the tree at some point in the past, tk, to identify a set of k
contemporary ancestral lineages. Suppose that these k ancestral lineages
survive to the present and give rise collectively to N extant descendants, such
that the ith ancestral lineage leaves ni extant species, where ni ≥ 1(because all
k ancestral lineages have survived) and where the ni sum to N . If the k
lineages all diversified at the same rate, then all vectors of descendant
species diversities (n1, n2, n3, …, nk) are equiprobable5 (e.g., Nee et al., 1992,
1994b, 1996; Nee and Harvey, 1994; Purvis et al., 1995; Purvis, 1996). This
expectation can be used to calculate the probability that one of the ancestral
lineages will realize more than r descendants, given a total of N species
descended from the set of k ancestral lineages. This probability is given by
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5 Curiously, it is often asserted that the relative cladogenesis test “makes no assumptions about how the
clades have been growing” (Nee and Harvey, 1994:1550) and that it “does not depend on any particular
model of diversification” (Nee et al., 1996:241; see also Nee and Harvey, 1994; Purvis et al., 1995).
Clearly, however, the assumptions entailed by this test—that rates of diversification are equal and
independent in all lineages at any given point in time—are those specifying the stochastic ERM random
branching model. In fact, equation (12) reduces to equation (1) (which provides the ERM nodal
probability) when k = 2 (i.e., for sister-group comparisons where N descendant species are partitioned
among two ancestral sister lineages; e.g., Nee and Harvey, 1994; Nee et al., 1994a, 1995; 1996; Purvis,
1996).
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where the summation is for positive N – rv – 1 and where N – rv – 1 ≥ k – 1
(Purvis et al., 1995; Nee et al., 1996). A significant result indicates that the
clade in question is anomalously diverse and therefore has diversified under
a significantly different rate than its contemporaries.

Although originally intended as a test of significant diversification rate
variation, the relative cladogenesis statistic was subsequently extended to
infer the location of significant diversification rate shifts by Purvis et al.
(1995). This extension is based on parsimony optimization: if two sister
lineages are inferred to be anomalously diverse under the relative
cladogenesis statistic, then a significant shift in rate is inferred to have
occurred in their common ancestor. Below we consider several potential
limitations associated with the attempt to use the relative cladogenesis
statistic to locate diversification rate shifts: some limitations are inherent to
the method, others pertain more specifically to divergence-time estimates in
supertrees. These limitations are illustrated with reference to the analysis of
diversification rate shifts in the primate supertree, and compared with the
behavior of the ∆ shift statistics where appropriate.

4.3.1.1 Susceptibility of the relative cladogenesis statistic to arbitrary
delineation of test window

As described above, the relative cladogenesis statistic requires delineation of
a “window” within which the test is to be applied. The dimensions of this
window include both its temporal depth and its taxonomic breadth.
However, circumscription of this window is arbitrary and therefore
potentially problematic given that the results inferred from the test are
known to be sensitive to the temporal depth (Purvis, 1996) and taxonomic
scope specified. Specification of the temporal dimension can be made less
arbitrary by sliding the window over the tree from the root to its tips,
recalculating the relative cladogenesis statistic at every point in time, tk,
associated with an increase in k, the number of the ancestral lineages (where
k = 2, 3, 4, …, (N – 1)). This approach was used by Purvis et al. (1995) and
has also been implemented in the (now defunct) End-Epi program (Harvey et
al., 1996; Rambaut et al., 1997). However, it is considerably more difficult
to objectively define (or integrate over) the taxonomic breadth of the
comparison, which nevertheless exerts a similarly strong influence on the
conclusions obtained. Although the sensitivity of the relative cladogenesis
statistic to phylogenetic scope is appropriate when the test is used to detect
diversification rate variation, this sample dependency is inappropriate when
applied to the problem of locating diversification rate shifts. This problem is
manifest in the analysis of diversification rate shifts in the primate supertree:
Purvis et al. (1995) originally detected 23 significant rate shifts when the
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relative cladogenesis statistic was applied to the entire primate tree but
subsequently identified an additional nine non-redundant rate shifts when the
various component clades were analyzed separately. By contrast, the number
of branches identified by the ∆ shift statistics (and the P-values of the
statistics) were unaffected by the phylogenetic scope of the analysis.

4.3.1.2 Susceptibility of the relative cladogenesis statistic to error in
divergence times

Application of the relative cladogenesis test requires reliable estimates of
divergence times, which is likely to be problematic for the analysis of
supertrees. Error in divergence-time estimates can confound the test by
causing misspecification of the appropriate set of ancestral lineages present
at the specified tk. Although recent methodological and theoretical advances
have greatly improved the accuracy of divergence-time estimates derived
from the primary analysis of nucleotide sequence data (e.g., Sanderson,
1997, 2002; Rambaut and Bromham, 1998; Thorne et al., 1998;
Huelsenbeck et al., 2000a; Yoder and Yang, 2000; Kishino et al., 2001;
Thorne and Kishino, 2002), the extent to which these methods can be
extended to the estimation of divergence times in supertrees is presently
unknown. Close inspection of the primate phylogeny illustrates some of the
challenges of estimating divergence times in supertrees, as well as the
undesirable consequences of the associated error for inferences of
diversification rates that rely on temporal information. We wish to
emphasize, however, that our criticisms are not intended to imply that the
dates in this particular supertree are exceptionally unreliable; rather, we
believe that the level of uncertainty in these data is similar to that in other
published supertrees.

Divergence times were estimated for 90 of the 160 nodes in the primate
supertree, all of which were derived directly from or calibrated against the
primate fossil record. Under the approach used, the divergence time of a
clade was equated with the age of the oldest fossil attributed to that lineage.
This approach will tend to systematically underestimate the true divergence
times of clades in proportion to their degree of incompleteness in the fossil
record. For several reasons, the degree to which a lineage is represented in
the fossil record is likely to be phylogenetically biased. For example,
preservation potential will be influenced by phylogenetically autocorrelated
differences in anatomy and demography, and taphonomic factors will be
influenced by phylogenetically autocorrelated differences in habitat
preference. Consequently, clades will vary in the degree to which their
inferred divergence times will be underestimated. The resulting
phylogenetically biased error in divergence-time (under)estimation will
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induce a corresponding pathological bias for the study of diversification
rates: an underestimate in the age of a clade will cause a corresponding
overestimate in its inferred rate of diversification.

As expected of a group with a heterogeneous representation in the fossil
record, the number of available fossil calibrations varied markedly across the
primate supertree: 15 estimates were used to date one node, whereas the
divergence times of many others were based on a single estimate. The
uncertainty associated with divergence times based on single estimates was
approximately and conservatively estimated to have an average error margin
>±50%, prompting Purvis (1995:413) to reasonably conclude that “not too
much reliance should be placed on single estimates.” Nevertheless, several
diversification rate shifts in the primate supertree relied on the single date
estimates. For example, Purvis et al. (1995:331) were appropriately skeptical
of the inferred diversification rate shift in the strepsirhine clade because “the
age of the galagid radiation is based on only a single estimate, so it may be
inaccurate.” However, this caveat applies equally to several other clades in
which diversification rate shifts were detected (e.g., Cercopithecus, Colobus,
Macaca, Presbytis, Saguinus) because they were similarly based on a single
(or very few) estimates.

Moreover, several of the nodes based on single (or very few) estimates
were used to calibrate other nodes in the primate supertree, causing a
cascade of error in both estimation of divergence times and the associated
inference of diversification rate shifts. For example, the divergence time of
Old World monkey-hominoid clade was estimated by Purvis (1995) at 27.5
± 4.5 million years ago (Mya) based on two fossils. Independent estimates
for the age of this node are typically much older. For example, maximum
likelihood estimates based on the entire protein-coding region of the
mitochondrial genome calibrated with a more reliable external fossil date
(the cetacean-artiodactyl divergence at 53–60 Mya) place this divergence in
the range of ~38–68 Mya (Arnason et al., 1998; Yoder and Yang, 2000). The
discrepancy in the timing of this divergence is somewhat troubling because it
was used to calibrate 32 other nodes within the Old World monkey-
hominoid clade (A. Purvis, pers. comm.), in which 28 of the 32 total
significant diversification rate shifts were detected by Purvis et al. (1995).

Uncertainty in divergence times is not restricted to those nodes based on
single estimates: dates in the primate supertree based on multiple estimates
also had non-trivial error. For example, Purvis (1995:413) reported
significant differences in the proportional error in divergence-time estimates
among clades in the primate supertree, which would be expected of a group
with phylogenetically biased representation in the fossil record. The highest
proportional error was found within cercopithecines, in which fully half of
the inferred diversification rate shifts occurred. The extent to which the
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acknowledged uncertainty in divergence-time estimates influenced this study
of diversification rate shifts in the primate supertree is difficult to ascertain;
Purvis et al. (1995) acknowledged the presence of error in the divergence
times and its potential impact on the analysis but did not attempt to quantify
the level of uncertainty or assess the sensitivity of the results to this source
of error.

Although the divergence times for the 90 dated nodes are likely to be
associated with substantial estimation error, the divergence times for the
remaining 70 nodes were not estimated at all, but instead generated
deterministically under the assumption of what might be called a “branching
clock” (sensu Sanmartín et al., 2001). Given a deterministic model of
exponential diversification, the divergence time of a given node can be
calculated as td = (ta)(ln Nd / ln Na), where ta and td are the ages of the
ancestral and descendant nodes, with Na and Nd species, respectively. Given
the countless number of hidden parameters influencing diversification rates,
the use of a deterministic branching model (particularly one whose fit to the
data is not evaluated) is likely to provide an overly simplistic and potentially
problematic solution to the problem of specifying the unknown divergence
times. The use of a branching model to specify >40% of the divergence
times in the primate supertree is likely to bias inferences of diversification
rates (Purvis et al., 1995). Many approaches (including the relative
cladogenesis test) invoke stochastic branching models to generate the
expected distribution of diversification events against which the observed
distribution is compared. However, use of a branching clock essentially
involves the model-based generation of the “observations” as well. Although
it is difficult to ascertain the accuracy of dates generated with this scheme,
there is no reason to expect it to be high: these divergence times combine the
considerable uncertainty of those estimated from fossil evidence and/or local
clocks (from which they are ultimately calibrated) with a branching clock of
uncertain justification.

In summary, scrutiny of the primate supertree highlights the challenges
of estimating divergence times in supertrees and reveals how the uncertainty
in these data can confound attempts to detect diversification rate shifts using
the relative cladogenesis statistic or other temporal tests. Although there is
reason for optimism that recent efforts will improve the reliability of
divergence-time estimates in supertrees (e.g., Lapointe and Cucumel, 1997;
Bryant et al., 2004; Lapointe and Levasseur, 2004; Vos and Mooers, 2004),
the ability of these methods to provide sufficiently accurate temporal
information has yet to be demonstrated. By contrast, because they effectively
ignore temporal information, the topology-based ∆ shift statistics provide a
more reliable means with which to infer diversification rate shifts in
supertrees.
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4.3.1.3 Susceptibility of the relative cladogenesis statistic to the trickle-
down problem

In addition to pioneering the development of methods for locating significant
diversification rate shifts, Purvis et al. (1995:331) were also among the first
authors to recognize the potentially confounding influence of what we have
termed the trickle-down problem, raising the caveat that any “result must be
interpreted cautiously because radiations are not independent: if a given
clade is a significant radiation, more inclusive clades will tend to be.” In
other words, significant diversification rate shifts at more nested nodes will
lead to the identification of spurious diversification rate shifts at more
inclusive nodes under their proposed parsimony optimization scheme.
Results from the primate analysis provide compelling empirical evidence of
the susceptibility of the relative cladogenesis statistic to the trickle-down
problem. Despite the aforementioned criticisms, the relative cladogenesis
statistic identified several diversification rate shifts also indicated by the
likelihood ratio–based ∆ shift statistics (e.g., shifts located within Galago,
Macaca , Cercopithecus , and Presbytis  at branches 3, 5, 6, and 7,
respectively; Figure 9). However, diversification rate shifts detected at
relatively nested nodes within the Old World monkey clade (those within
Macaca, Cercopithecus, and Presbytis at branches 5, 6, and 7, respectively;
Figure 9) caused a trickle-down of diversification rate shifts to be inferred at
more inclusive nodes under the relative cladogenesis test. Accordingly, the
demonstrable susceptibility of the relative cladogenesis statistic to the
trickle-down problem suggests that this test is more appropriately restricted
to the inference of diversification rate variation.

5. Discussion

5.1 Implementation and accommodation of phylogenetic
uncertainty

The methods described in this chapter have been implemented in the
computer program, SYMMETREE. Executables have been compiled for
Macintosh (OS 9 and OS X), Windows, and UNIX operating systems, which
are freely available at http://www.phylodiversity.net/brian/ or
http://www.kchan.org, or by emailing either of these authors directly.

Methods for detecting diversification rate variation have typically
required strictly dichotomous phylogenies; given the empirical reality of
polytomies, this limitation has proven to be a serious impediment to their
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application. Accordingly, an important feature of SYMMETREE is its facility
to deal with incompletely resolved trees. The program recognizes two types
of soft polytomies that require different analytical approaches: “collapsed”
polytomies, which are caused by internal branches of zero length; and,
“consensus” polytomies, which stem from conflict among a set of equally
optimal (super)tree estimates. Collapsed polytomies are addressed by
randomly (and repeatedly) generating dichotomous solutions using one of
several alternative random taxon-addition algorithms. However, this
procedure is inappropriate for consensus polytomies. Although such a
polytomy might stem from conflict among a small set of source trees, it
might nevertheless be consistent with a much larger set of (randomly
resolved) binary trees. Accordingly, only those resolutions of a consensus
polytomy that belong to the set of conflicting trees should be considered,
which can be accomplished by means of a batch-processing option that
sequentially analyzes each tree belonging to the set of conflicting trees. For
both collapsed and consensus polytomies, the appropriate test can be applied
to each tree within the set of (randomly resolved or equally optimal) trees to
provide an estimate of the confidence intervals on the inference being made.

More generally, polytomies can be viewed as a manifestation of
phylogenetic uncertainty. Although often acknowledged as a crucial
assumption, the effect of phylogenetic error on inferences of diversification
rate is seldom explicitly taken into account (but see, for example, Sanderson
and Wojciechowski, 1996; Baldwin and Sanderson, 1998). In theory, it
would be straightforward to assess the confidence interval on an inference by
batch processing the bootstrap profile (and/or the posterior probability
distribution) of study trees. Although this approach is viable for trees derived
from primary analyses (i.e., conventional analysis of the primary character
data), supertree estimation methods present a special challenge in this
respect because there is currently no comparable means of estimating
topological uncertainty in supertrees. Clearly, this area requires further
development (Ronquist et al., 2004; Moore et al., in prep.).

5.2 Extensions, limitations, and applications

The methods described in this chapter are intended to answer two general
questions.  Have the branches of this tree experienced differential
diversification rates? And, if so, on which branches have those shifts in rate
occurred? Accordingly, these methods should find useful application to a
range of problems (outlined below) but, of course, will be ill-suited to the
investigation of other equally valid and interesting evolutionary questions.
For example, we might want to estimate parameters associated with the
diversification process (e.g., speciation and extinction rates) or test whether
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diversification rates have changed significantly through time. These
questions require information on the (relative or absolute) timing of
diversification events, and so will necessarily involve the use of temporal
methods (e.g., Harvey et al., 1991, 1994a, b; Nee et al., 1992, 1994a, b;
Harvey and Nee, 1993, 1994; Kubo and Iwasa, 1995; Paradis, 1997, 1998b;
Nee, 2001). In such applications of temporal methods, however, it is first
necessary to establish that there has not been significant among-lineage
diversification rate variation within the study phylogeny. This requirement
can readily be established (or disconfirmed) with our whole-tree tests for
diversification rate variation, again emphasizing the inherent
complementarity of temporal- and topology-based methods.

Other questions might be profitably addressed by extending the whole-
tree methods described herein. For example, we might want to know if shifts
in diversification rate are correlated with changes in some other variable
(e.g., the origin of morphological or behavioral novelties, ecological
associations, or biogeographic events). Topology-based approaches to this
problem are available but typically involve replicated sister-group
comparisons (e.g., Slowinski and Guyer, 1993; Nee et al., 1996; Barraclough
et al., 1998; Goudet, 1999; Simms and McConway, 2003) that incorporate
relatively limited phylogenetic information (e.g., Sanderson and Donoghue,
1994, 1996). As has been demonstrated for other diversification rate
problems, the power to detect correlates of shifts in diversification rate is
likely to be substantially enhanced by incorporating information from more
of the tree. We are currently working to extend the methods described in this
chapter to provide a whole-tree approach to this problem.

In addition to addressing other types of questions, the whole-tree
methods described in this chapter might also be profitably extended to
incorporate additional sources of information. Although the whole-tree
methods currently utilize exclusively topological information on the
distribution of species diversity, they could readily be generalized to
incorporate temporal information on the distribution of waiting times
between diversification events. It is conceivable that the inclusion of
divergence-time estimates, when available and appropriate to the hypothesis
of interest, could further enhance the power to detect the presence and locate
the position of significant shifts in diversification rate.

Future elaborations notwithstanding, the whole-tree methods presented
here have immediate implications for a range of data-exploration and
hypothesis-testing scenarios associated with the study of diversification
rates. Whole-tree surveys for significant diversification rate variation could
provide an effective discovery method for generating causal hypotheses of
factors that have caused, are caused by, or are correlated with differential
diversification rates. For example, the discovery that diversification rate
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variation is often associated with plant clades that are polymorphic for
growth form (i.e., woody / herbaceous) might lead us to hypothesize that
shifts in growth form are affecting diversification rates (e.g., Eriksson and
Bremer, 1991, 1992; Bremer and Eriksson, 1992; Judd et al., 1994; Ricklefs
and Renner, 1994; Tiffney and Mazer, 1995; Dodd et al., 1999). The ability
to detect clades with significant diversification rate variation and/or
diversification rate shifts will also help identify the data relevant to studies
of phenomena that are hypothesized to be correlated with differential
diversification rates. For example, application of the whole-tree tests could
identify the data necessary to evaluate the hypothesized correlation between
rates of nucleotide substitution and rates of cladogenesis (e.g., Mindell et al.,
1989; Barraclough et al., 1996; Savolainen and Goudet, 1998; Barraclough
and Savolainen, 2001; Jobson and Albert, 2002). Additionally, the whole-
tree tests could provide more powerful tools for studies that seek to assess
the empirical prevalence of diversification rate variation (e.g., Guyer and
Slowinski, 1991, 1993; Heard, 1992; Mooers, 1995). Finally, several
evolutionary processes could entail hypotheses that predict multiple
diversification rate shifts dispersed throughout whole clades, rather than
single shifts concentrated at particular nodes. These processes include the
effect of various co-evolutionary associations on rates of diversification
(e.g., the reciprocal radiations predicted for some insect / plant associations;
Farrell, 1998; Farrell and Mitter, 1998; Kelly and Farrell, 1998) and the
effect of relative refractory periods associated with “age-biased
cladogenesis” (Hey 1992; Harvey and Nee, 1993; Losos and Adler, 1995;
Chan and Moore, 1999).

The foregoing discussion suggests that several different evolutionary
questions — associated with detecting significant diversification rate
variation or locating diversification rate shifts — might be effectively
addressed by the separate application of either the whole-tree M statistics or
the ∆ shift statistics, respectively. However, both sets of methods could be
applied in concert to address additional evolutionary questions. For instance,
the combined application of the M and ∆ statistics might be used to explore
the empirical prevalence of different models of cladogenesis (Figure 10). As
demonstrated in the primate analyses, results obtained under the whole-tree
M  statistics and the ∆ shift statistics will not always be perfectly
correspondent. That is, the whole-tree M statistics might occasionally detect
significant diversification rate variation within clades for which the ∆ shift
statistics subsequently fail to locate any significant diversification rate shifts.
Conversely, significant diversification rate shifts might sometimes be
identified within clades for which the M statistics fail to detect significant
among-lineage diversification rate variation. The former scenario will arise
when diversification rate variation is rather evenly dispersed across the tree
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(see Section 4.3); such a relatively uniform phylogenetic distribution of
diversification rate change is consistent with a gradual evolutionary model of
cladogenesis. By contrast, the latter scenario entails a local concentration of
diversification rate heterogeneity along a single branch (or small number of
branches) that is below the threshold of detection under the whole-tree M
statistics. This relatively sporadic phylogenetic distribution of diversification
rate change is consistent with a punctuated evolutionary model of
cladogenesis. Thus, discord in the results obtained under the whole-tree M
statistics or the ∆ shift statistics can be usefully exploited to tease apart
modes of diversification rate heterogeneity.

In conclusion, we are optimistic that the methods described in this
chapter should enable a range of evolutionary questions to be addressed
when reliable temporal information is either unavailable or inappropriate to
the problem at hand.
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