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Abstract.—The estimation of ever larger phylogenies requires consideration of alternative inference strategies, including
divide-and-conquer approaches that decompose the global inference problem to a set of smaller, more manageable com-
ponent problems. A prominent locus of research in this area is the development of supertree methods, which estimate a
composite tree by combining a set of partially overlapping component topologies. Although promising, the use of com-
ponent tree topologies as the primary data dissociates supertrees from complexities within the underling character data
and complicates the evaluation of phylogenetic uncertainty. We address these issues by exploring three approaches that
variously incorporate nonparametric bootstrapping into a common supertree estimation algorithm (matrix representation
with parsimony, although any algorithm might be used), including bootstrap-weighting, source-tree bootstrapping, and hi-
erarchical bootstrapping. We illustrate these procedures by means of hypothetical and empirical examples. Our preliminary
experiments suggest that these methods have the potential to improve the correspondence of supertree estimates to those
derived from simultaneous analysis of the combined data and to allow uncertainty in supertree topologies to be quantified.
The ability to increase the transparency of supertrees to the underlying character data has several practical implications
and sheds new light on an old debate. These methods have been implemented in the freely available program, tREeBOOT.
[Bootstrap-weighted MRP; hierarchical bootstrapping; nodal support; phylogenetic uncertainty; source-tree bootstrapping;
supertree; taxonomic congruence; total evidence.]

Supertree methods have attracted attention as a
promising alternative to simultaneous analysis for as-
sembling large trees from disparate data sources (e.g.,
Sanderson et al., 1998; Bininda-Emonds et al., 2003;
Bininda-Emonds, 2004a, 2004b). However, two key is-
sues require attention. First, supertrees tend to be dis-
sociated from the primary character data. Conventional
phylogenetic analysis provides a topological summary
of typically complex patterns of character covariation
within the corresponding data matrix. These topolog-
ical summaries, in turn, provide the raw data for su-
pertree methods, which effectively prevent sub-signals
within the component data sets from contributing to
the supertree estimate. Consequently, combining a set of
source-tree topologies may yield a supertree that is not
sanctioned by a simultaneous analysis of the component
data sets. We refer to this as the data-dissociation prob-
lem. Second, it is not clear how best to assess uncertainty
in supertree estimates (e.g., Bininda-Emonds, 2003;
Wilkinson et al., 2005a; Cotton et al., 2005; Burleigh et al.,
2006), which greatly diminishes their utility for system-
atic and comparative studies.

We address these issues here, considering various
means of incorporating nonparametric bootstrapping to
both increase the transparency of supertrees to their un-
derlying character data and to gauge uncertainty in su-
pertree estimates. The alternative bootstrap approaches
are illustrated by means of hypothetical examples and
empirical experiments from the plant group Dipsacales
comparing the supertree topologies and bootstrap pro-
portions derived under these alternative bootstrap ap-
proaches to those estimated from simultaneous analysis
of the component data. Although we focus on matrix rep-
resentation with parsimony (MRP: Baum, 1992; Ragan,
1992), the approaches we describe are applicable to other
supertree methods.

MATERIALS AND METHODS

Supertree Bootstrapping Procedures

Bootstrap-weighted MRP.—Conventional MRP takes as
input a set of two or more species phylogenies (i.e.,
“source trees”) with partially overlapping taxa, which
are transposed using additive binary coding (Sokal and
Sneath, 1963) to construct a matrix comprising one col-
umn (i.e., “matrix element”) for every node in the set
of source trees and one row for every terminal taxon
in the source-tree superset (Fig. 1). The resulting MRP
matrix is then subjected to standard parsimony algo-
rithms to estimate the optimal supertree(s). Under this
scheme, each matrix element is arbitrarily assigned an
equal weight, such that two conflicting matrix elements
will (theoretically) impart an equal influence on the su-
pertree topology, regardless of possible differences in
the underlying character support for their correspond-
ing source-tree nodes.

Several authors (e.g., Ronquist, 1996; Bininda-Emonds
and Bryant, 1998; Sanderson et al., 1998) have suggested
that the correspondence of supertree topologies to the
underlying character data might be enhanced by scal-
ing each matrix element by the bootstrap support value
of the corresponding source-tree node (Fig. 1). In princi-
ple, bootstrap-weighted MRP should arbitrate conflicts
among the set of source trees such that the supertree
topology is resolved in favor of more strongly supported
source-tree nodes. Indeed, this approach appears to im-
prove the accuracy of MRP supertree estimation under
simulation (e.g., Bininda-Emonds and Sanderson, 2001).
However, this approach does not allow nodal support in
the supertree to be evaluated.

Source-tree bootstrapping.—Because a collection of
source-tree topologies constitutes the raw data for
supertree estimation, these observations might be
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FIGURE 1. Conventional and bootstrap-weighted MRP. Each node in the set of source trees contributes an element to the MRP matrix, which
is scaled by the corresponding nodal-support value under the bootstrap-weighting scheme (i.e., the row of weights at the bottom of the matrix).
OG = outgroup.

bootstrapped to evaluate the degree of conflict among
them (e.g., Daubin et al., 2001; Creevey and McInerney,
2005). In outline, a set of source trees is compiled by ran-
domly and repeatedly drawing (with replacement) from
the original set of estimated source trees, constructing
an MRP matrix from this bootstrap set of source trees,
and finally estimating a supertree from this matrix. This
procedure is repeated an arbitrary number of times to
generate a bootstrap profile of supertrees, which is then
summarized using majority-rule consensus such that the
frequencies of nodes in the consensus supertree provide
an estimate of the degree of congruence among the origi-
nal set of source-tree topologies. We refer to this approach
as source-tree bootstrapping, which is implemented by the
following algorithm (Fig. 2):

1. Estimate the optimal tree(s) for each of the m source-
tree data matrices.

2. Randomly select from among the m source-tree sets
(with P = 1/m). If there are multiple trees in the cho-
sen source-tree set (e.g., reflecting equally optimal es-
timates), randomly select a tree from this set of k trees
(with P = 1/k). Note that this is statistically equiva-
lent to reciprocally weighting the chosen tree (by 1/k)
when averaged over many draws.

3. Iterate step (2) m times.
4. Construct an MRP matrix from the set of m randomly

selected source trees.
5. Estimate the optimal supertree(s) from the bootstrap

MRP matrix and append the resulting supertree(s) to
a file.

6. Iterate steps (2) through (5) r times (e.g., 1000 repli-
cates).

7. Summarize the bootstrap profile of supertrees us-
ing majority-rule consensus. As in conventional boot-
strap consensus, multiple trees derived for a given
bootstrap replicate are reciprocally weighted. The fre-
quency of clades in this consensus supertree provides
an estimate of the topological consistency among the
set of source trees that is analogous to standard boot-
strap proportions (e.g., Felsenstein, 1985).

We note that source-tree bootstrapping can also be
based directly on previously estimated phylogenies (ob-
viating step 1) when source-tree data matrices are un-
available for reanalysis.

Hierarchical bootstrapping.—Rather than drawing from
point estimates of each source tree (as implemented in
source-tree bootstrapping), we might instead exploit the
set of bootstrap profiles for each of the source trees. That
is, we could bootstrap from the set of source-tree boot-
strap profiles (e.g., Cotton and Page, 2002; Page, 2004). In
outline, this approach entails randomly and repeatedly
sampling (with replacement) a set of source trees from
their respective bootstrap profiles, constructing an MRP
matrix from this bootstrap set of source trees, and finally
estimating the optimal supertree(s) from this matrix. This
procedure is repeated an arbitrary number of times to
generate a bootstrap profile of supertrees, which is then
summarized by majority-rule consensus such that the
frequencies of nodes in the consensus supertree provide
an estimate of the level of congruence among the original
set of source-tree data matrices. We refer to this approach
as hierarchical bootstrapping, which is implemented by the
following algorithm (Fig. 3):



664 SYSTEMATIC BIOLOGY VOL. 55

FIGURE 2. Source-tree bootstrapping. A set of m random draws (with replacement) are made from the set of source trees. Each set of source
trees is then translated into an MRP matrix, from which a supertree is estimated and appended to an array. This procedure is replicated r times.
The resulting array of s supertrees is summarized by majority-rule consensus such that the frequencies of nodes in the consensus supertree
provide an estimate of the topological congruence among the set of source-tree topologies. This approach is referred to as EPT-based source-tree
bootstrapping when samples are drawn from the entire set of equally parsimonious source trees, and as MRC-based source-tree bootstrapping when
samples are drawn from the set of majority-rule consensus of those equally parsimonious source trees. See text for details.

1. Generate n bootstrap pseudo-matrices for each of the
original m source-tree data matrices and estimate the
optimal tree(s) for each replicate.

2. Randomly draw a tree from the first source-tree boot-
strap profile (with P = 1/n). If more than one tree is
associated with the selected replicate (e.g., reflecting
a set of equally parsimonious trees), randomly select
a tree from among the set of k trees (with P = 1/k).
This is statistically equivalent to reciprocally weight-
ing the chosen tree (by 1/k) when averaged over many
draws.

3. Iterate step (2) for each of the m source-tree bootstrap
profiles.

4. Construct an MRP matrix from the set of m randomly
selected source trees.

5. Estimate the optimal supertree(s) from the bootstrap
MRP matrix and append the resulting supertree(s) to
a file.

6. Iterate steps (2) through (5) r times (e.g., 1000 repli-
cates).

7. Summarize the bootstrap profile of supertrees using
majority-rule consensus. As in conventional bootstrap
consensus, multiple trees derived for a given boot-
strap replicate are reciprocally weighted. The frequen-
cies of clades in the consensus supertree provide an
estimate of their underlying character support that
is analogous to standard bootstrap proportions (e.g.,
Felsenstein, 1985).

A Simple Experimental Design to Explore Supertree
Bootstrapping Procedures

We present results from hypothetical examples and
empirical data to address two questions: (1) Is it possi-
ble for bootstrap procedures to improve the performance
of MRP? and (2) Is it possible to reflect the underlying
character support in the estimated supertree topology?
We pursue these questions by comparing the similarity
of the supertree topologies and/or bootstrap proportions
derived under the various bootstrap approaches to those
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FIGURE 3. Hierarchical bootstrapping. This procedure is similar to that of source-tree bootstrapping (illustrated in Fig. 2), but differs in two
important respects. First, each replicate set of source trees is drawn randomly from the set of m source-tree bootstrap profiles, such that each
source-tree profile contributes one tree to each bootstrap replicate (with P = 1/n). Second, the frequencies of clades in the consensus supertree
rendered under this approach provide an estimate of the underlying character support within the set of source-tree data matrices that is analogous
to conventional bootstrap proportions. See text for details.

based on a simultaneous analysis of the primary data sets
and also to estimates derived with a number of other con-
ventional supertree methods

Some aspects of our experimental design warrant com-
ment. First, our analyses involve source trees with the
same set of terminal taxa for each component data set.
This contrasts, of course, with the normal application of
supertree methods, which are typically used to combine
source trees with only partially overlapping taxa. How-
ever, our approach factors out the potentially confound-
ing effects introduced by differential taxonomic overlap
and, thus, provides a baseline for the future study of such
cases. Second, we compare estimates derived under the
various bootstrap procedures to those obtained from si-
multaneous analyses of the primary character data. Al-
though the true value of the target parameter is generally

unknown for empirical inferences, we suspect that most
systematists would generally be satisfied if supertree
methods performed as well (or as poorly) as simultane-
ous analysis. Accordingly, the topologies and bootstrap
proportions derived by simultaneous analysis provide
the references against which the “accuracy” of various
bootstrap approaches are empirically evaluated.

General considerations.—We deliberately set out to iden-
tify a set of data partitions with an identical set (and
relatively small number) of terminal taxa that con-
flicted strongly on the relationships among a subset
of those taxa. This might seem an odd strategy with
which to explore the behavior of supertree estimation
methods, which more typically involve partial overlap
among a collectively large number of taxa. Nevertheless,
our approach offered several advantages: (1) complete
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taxonomic overlap among component data sets con-
trolled for potential biases in supertree methods associ-
ated both with differential taxonomic overlap and with
differential source-tree size (e.g., Purvis, 1995; Ronquist,
1996; Bininda-Emonds and Bryant, 1998); (2) the identi-
cal taxon sample among the component data sets also
decreased the incidence of (and potential bias associ-
ated with) missing data in the simultaneous analyses
of the component data sets (to which the various su-
pertree estimates were compared); and (3) the relatively
small number of taxa allowed a degree of experimen-
tation that would have otherwise been computationally
prohibitive (which should help identify the relevant sub-
set of issues to be explored by future studies of larger,
more complex data sets), while still enabling relatively
thorough analyses in all of these experiments (which
should reduce the incidence of spurious and potentially
confounding estimates stemming from insufficiently rig-
orous phylogenetic analyses). Unless stated otherwise,
all of the analyses described below were performed us-
ing parsimony as the optimality criterion (with all char-
acters weighted equally) with PAUP* v. 4.0 (Swofford,
2002). The data sets referred to are available from http:
//www.phylodiversity.net/bmoore/resources.html.

Delineation of component matrices.—A global data set
was compiled from recent studies of Dipsacales phy-
logeny that included one morphological and nine DNA
sequence partitions (8407 characters with no missing
data) for 25 taxa. Sequence partitions were aligned using
ClustalX (Thompson et al., 1997) and adjusted manually
where necessary. We performed an exhaustive series of
pairwise partition homogeneity tests (N = 45) to identify
compatibility issues, which failed to detect significant
conflict among the set of partitions. As a baseline, we
first subjected the entire matrix to exact and bootstrap
analyses. The exact analysis was performed using the
branch-and-bound algorithm, and the bootstrap analy-
sis entailed heuristic searches of 103 replicate data sets,
each search involving 103 random-taxon addition start-
ing trees that were subjected to TBR branch swapping.
We then performed a set of analyses to identify conflict-
ing components within the global matrix: 11 data par-
titions (comprising the 10 individual partitions and the
combined DNA alignment) were each subjected to exact
and bootstrap analyses (executed as described above).
These analyses identified three components (morphol-

TABLE 1. Properties of component data sets and their associated trees.

Partition NC
a NP I C

b NE PT
c

2-Source-tree
partition set

3-Source-tree
partition set A

3-Source-tree
partition set B

4-Source-tree
partition set

morph 97 82 77 1 1 1 1
atpB 979 296 12 2 2
rbcL 1428 110 2 2 3
All DNA 8310 1862 1 2
DNA comp 1 5904 1456 1 3
DNA comp 2 7332 1566 4 3
DNA comp 3 6882 1752 1 4

a Number of characters. b Number of parsimony-informative characters. c Number of equally optimal trees.

ogy, atpB, and the rbcL coding region) that conflicted
strongly with the simultaneous estimate primarily re-
garding relationships within two clades: Dipsacaceae
and Linneaeae. These conflicting components were then
combined under the following four partition-set scheme:
a single 2-partition set (all DNA | morphology), two 3-
partition sets (set A: morphology | atpB| DNA compli-
ment 1; set B: morphology | rbcL| DNA compliment 2),
and one 4-partition set (morphology | atpB| rbcL| DNA
compliment 3). Properties of the component data sets are
summarized in Table 1.

Estimation of component phylogenies.—The four parti-
tion sets comprised a total of 7 unique component data
sets, each of which was subjected to a second round of
analyses. Exact analyses were performed by branch-and-
bound, and conventional bootstrap analyses entailed ex-
act searches of 103 replicate data sets. This resulted in
three sets of trees for each component of the four partition
sets: equally parsimonious trees from the exact analy-
ses were summarized using both strict and majority-rule
consensus, and the profile of trees from the conventional
bootstrap analyses were summarized (as is standard
practice) by majority-rule consensus. Properties of trees
estimated from the 7 component data sets are summa-
rized in Table 1.

Combination of component phylogenies using bootstrap su-
pertree methods.—Component trees for each of the four
partition sets were combined under three main bootstrap
approaches: bootstrap-weighted MRP, source-tree boot-
strap MRP, and hierarchical bootstrap MRP.

The bootstrap-weighted MRP analyses entailed en-
coding each set of component trees as an MRP matrix and
scaling the resulting matrix elements by the bootstrap
values of their corresponding source-tree nodes (using
tREeBOOT; see below). The resulting scaled-MRP ma-
trix was then subjected to an exact (branch-and-bound)
analysis. Equally optimal supertrees were summarized
by strict consensus.

Source-tree bootstrap analyses were performed on
two sets of trees: one set of analyses was based
on the majority-rule consensus of the set of equally
parsimonious trees from exact searches of the compo-
nent data matrices (i.e., MRC-based source-tree boot-
strapping), and the second set of analyses was based
on the entire set of those equally parsimonious trees
(i.e., EPT-based source-tree bootstrapping). Source-tree
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bootstrapping involved randomly sampling (with re-
placement) from the (MRC or EPT) set of source trees
until a bootstrap sample equal in size to the original
had been generated. An MRP matrix was then derived
from each bootstrap sample. In the case of EPT-based
source-tree bootstrapping, sampled trees were recipro-
cally weighted according to the number of equally par-
simonious trees to which they belonged (e.g., whenever
1 of the 12 equally parsimonious trees for the atpB data
set was randomly drawn, it was assigned a weight of
1/12), which entails scaling the set of matrix elements
for that tree. For every analysis, 103 source-tree boot-
strap MRP replicates were generated, which were com-
bined as a batch file. Each MRP matrix was subjected
to an heuristic search in which 103 starting trees were
generated by random-taxon addition and subjected to
TBR branch swapping. The optimal supertree(s) found
for each of the 103 replicate MRP matrices were appended
to a file, and the resulting supertree bootstrap profile was
then summarized by majority-rule consensus. As in con-
ventional bootstrap consensus, reciprocal weighting of
equally parsimonious (super) trees was used.

Hierarchical bootstrapping analyses involved ran-
domly sampling (with replacement) a single tree from
each of the bootstrap profiles for the set of source trees.
An MRP matrix was then derived from this bootstrap
sample of trees. This process was iterated 103 times, and
the resulting MRP matrices were then combined as a
batch file. Each MRP matrix was subjected to an heuris-
tic search in which 103 starting trees were generated
by random-taxon addition and subjected to TBR branch
swapping. The optimal supertree(s) found for each of
the 103 replicate MRP matrices were appended to a file,
and the resulting supertree bootstrap profile was then
summarized by majority-rule consensus using recipro-
cal weighting. A second series of hierarchical bootstrap
analyses was performed as above, except that each tree
in the bootstrap sample was scaled by the proportion of
parsimony-informative characters within its component
data matrix.

To assess the effect of sampling intensity on the boot-
strap supertree estimates, we repeated all of the source-
tree and hierarchical bootstrap analyses described above
using 104 and 105 replicates. The results obtained from
these larger bootstrap samples were essentially indistin-
guishable from those based on 103 replicates, which are
the source of the results presented in this paper.

Combination of component phylogenies using conventional
supertree methods.—For the purpose of comparison, we
also combined the set of source trees for each par-
tition set using several conventional supertree algo-
rithms, including standard MRP (Baum, 1992; Ragan,
1992), matrix representation with flipping (MRF; Chen
et al., 2002, 2003; Burleigh et al., 2004), MinCut (MC;
Semple and Steel, 2000), and modified MinCut (MC*;
Page, 2002). Our rational for choosing these four meth-
ods from the growing pool of available supertree ap-
proaches (currently comprising more than a dozen
alternatives; e.g., Wilkinson et al., 2005b; Bininda-

Emonds, 2004a) deserves comment: MRP is the most
frequently used method (e.g., Bininda-Emonds, 2004b),
MinCut and modified MinCut methods share the unique
(and highly desirable) property of running in polyno-
mial time on species number (e.g., Semple and Steel,
2000; Page, 2002), and MRF has typically outperformed
other methods under simulation (e.g., Bininda-Emonds
and Sanderson, 2001; Chen et al., 2002; Eulenstein et al.,
2004).

MRP and MRF analyses require that the set of source
trees first be encoded as an MRP matrix (accomplished
using tREeBOOT). MRP matrices were subjected to exact
(branch-and-bound) analyses. MRF analyses involved a
series of heuristic searches (using Rainbow v.b1.3: Chen
et al., 2004): in each search, 103 starting trees were gen-
erated by random taxon addition, and each starting tree
was then subjected to 106 branch-swap perturbations.
To reduce the probability of entrapment in a local op-
tima, we performed replicate heuristic searches with
TBR, SPR, and NNI branch-swapping algorithms. The
MC and MC* analyses were performed using Supertree
0.3 (Page, 2002). Searches resulting in multiple, equally
optimal supertrees were summarized using strict con-
sensus. The entire set of supertree analyses was repeated
using each of the three sets of source trees inferred by
the component analyses (see Estimation of Component
Phylogenies).

RESULTS

Hypothetical Examples

As predicted, scaling MRP matrix elements by the
bootstrap proportions of the corresponding source-tree
nodes in the two hypothetical examples (Figs. 4 and 5)
allows more strongly supported nodes to exert a pro-
portionate influence of the inferred supertree topology.
However, this approach may either increase or decrease
the correspondence of the supertree to the phylogeny
inferred by a simultaneous analysis of the component
matrices: bootstrap-weighting improved upon the MRP
estimate in one example (Fig. 5) but resulted in a su-
pertree not sanctioned by a simultaneous analysis of the
data in the other (Fig. 4).

Source-tree bootstrapping performed poorly in both
hypothetical examples. This is somewhat unsurprising
given that this approach should allow more frequent
source-tree topologies to contribute proportionately to
the inferred supertree topology. In these examples, the
conflicting source-tree topologies occur in equal fre-
quency, such that the method is unlikely to improve the
supertree estimate. In the first example, the supertree
inferred using source-tree bootstrapping is identical to
one of the source trees (Fig. 4), whereas the supertree
inferred in the second example is different from either
source tree (presumably owing to anomalies of the MRP
algorithm). In both examples, the bootstrap values for the
single correctly inferred node (subtending taxa BCD) was
inflated relative to the values derived from simultaneous
analysis.
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FIGURE 4. A hypothetical example illustrating the proposed bootstrap approaches (modified from Barrett et al., 1991; see also Pisani and
Wilkinson, 2002). The example was originally contrived to illustrate the phenomenon of “weak-signal enhancement”: congruent sub-signals in
the two component matrices combine to become the dominant signal when the component matrices are analyzed simultaneously. The two trees
derived from separate analyses differ from that sanctioned by the simultaneous analysis. Although the latter topology is not recovered by the
supertree bootstrapping approaches, neither is it recovered by a conventional bootstrap analysis. The estimate based on hierarchical bootstrapping
is identical to the simultaneous bootstrap tree (i.e., the target tree). In this example, the strict consensus of the two equally parsimonious trees
found by unweighted MRP is also identical to the target tree, but the estimate derived by bootstrap-weighted MRP is not (but is identical to the
source tree with the higher bootstrap proportions).

Hierarchical bootstrapping fared better in the hypo-
thetical examples. The supertree topology inferred using
this approach is identical to that derived from a bootstrap
analysis of the combined source-tree data matrices in the
first example (Fig. 4), whereas the supertree inferred in
the second example was compatible with (but less re-
solved than) the simultaneous bootstrap estimate (Fig. 5).
Apparently, the failure to recover the target topology in
the second example reflects the inability of the hierarchi-

cal bootstrap to adequately gauge the weight of evidence
in the conflicting source-tree bootstrap profiles. The boot-
strap can be interpreted as summarizing two aspects of a
given data matrix: the “quantity” of data (the weight of
evidence) and the “quality” of the data (the level of ho-
moplasy). The latter component is partially manifest by
the number of equally parsimonious trees derived from
the replicate data sets (the scatter of the bootstrap profile),
but the former term is poorly represented by the profile.
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FIGURE 5. A second hypothetical example illustrating additional aspects of the proposed bootstrap approaches. Bootstrap analyses of the
two data partitions in this example produce bootstrap proportions similar to those of the first example (Fig. 4) despite differences in the
weight of character evidence between the matrices. The hierarchical bootstrap tree is compatible with (but less resolved than) the simul-
taneous bootstrap tree (i.e., the target tree), but converges on the target tree when scaled to reflect the relative weight of evidence in the
two source-tree data matrices. In contrast to the first example, the tree based on unweighted MRP in this case differs from the target tree,
but the bootstrap-weighted MRP tree is identical to the target (however, it is also still identical to the source tree with the higher bootstrap
proportions).

Consequently, matrix 2 in the second example exerts a
disproportionate influence on the supertree inferred by
hierarchical bootstrapping. We might attempt to com-
pensate for this by scaling the hierarchical bootstrap
profiles by some measure proportional to the weight of
evidence in each source-tree data matrix. For example, al-
though admittedly crude, the sampled source trees could
be scaled by the proportion of parsimony informative
characters in the corresponding data matrices. Applica-
tion of this scaled hierarchical bootstrap procedure to the

second example increased the correspondence of the re-
sulting supertree topology and bootstrap proportions to
those estimated from a bootstrap analysis of the com-
bined data (Fig. 5).

An Empirical Example: Dipsacales

Topological distance.—The similarity of alternative
supertree estimates to the topology inferred by a simul-
taneous analysis of the component data is summarized
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FIGURE 6. Topological similarity of supertree estimates to a target phylogeny based on a simultaneous analysis of the combined dataset for
the plant group, Dipsacales. The target tree is located at the center of the graph, and each supertree is plotted within (sub)sectors for each of the
supertree estimation methods. The radial distance from each supertree to the center of the graph reflects its topological distance to the target tree
in units of NNI (nearest-neighbor interchange) branch swaps. Abbreviations for supertree methods: MC = MinCut; MC* = modified MinCut;
MRP = matrix representation with parsimony; MRF = matrix representation with flipping. Abbreviations for sets of source trees from which
supertree estimates were derived: EPT = set of equally parsimonious source trees; MRC = set of majority-rule consensus source trees; STRICT =
set of set of strict consensus source trees; BOOTSTRAP = set of bootstrap source trees. The degree of resolution for each supertree estimate is
listed in Table 2.

in Figure 6. Supertrees were estimated using the
four bootstrapping approaches described above
(bootstrap-weighted MRP, source-tree bootstrapping,
hierarchical bootstrapping, and scaled hierarchical boot-
strapping) and four conventional supertree estimation
methods: MRP, MinCut, modified MinCut, and matrix
representation with flipping (MRF).

Whenever possible, each supertree method was ap-
plied to three alternative sets of source-tree topologies:
equally parsimonious trees resulting from exact parsi-
mony searches of the component data sets were summa-
rized as both majority-rule and strict consensus trees, and
the profiles of trees generated by conventional bootstrap
analyses of each component data set were summarized
as majority-rule consensus trees.

The entire set of analyses (eight methods by three
source-tree sets) was performed under each of four data
partitioning schemes: the combined data set was parsed
into one set of two components (the 2-partition set),

two sets of three components (3-partition sets A and B),
and one set of four component matrices (the 4-partition
set). Equally parsimonious supertrees derived from these
analyses were summarized using strict consensus.

The results are summarized on a circular “dartboard”
plot, which is divided into eight primary sectors (one
for each supertree method), and some of these are fur-
ther subdivided into three sub-sectors (one for each
set of source trees). The target (simultaneous analy-
sis) topology is located at the center of the plot. Each
supertree estimate is plotted as a point within the
appropriate (sub)sector, such that the radial distance
from each point to the center of the graph corresponds
to the topological distance of that supertree to the
target tree. Topological distances were calculated us-
ing the Robinson-Foulds index (Robinson and Foulds,
1981) and were normalized such that the values re-
flect the number of NNI branch swaps between trees.
Note that the distance between the various supertree
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TABLE 2. Phylogenetic resolution1 of supertree estimates under al-
ternative methods.

1Percent resolution was calculated as k/(N − 1), where k is the number of
nodes in a tree of N species: this implicitly assumes that the underlying tree is
strictly dichotomous (i.e., that all polytomies are “soft” sensu Maddison, 1989).

Abbreviations: MC = MinCut; MC* = modified MinCut; MRFi = matrix rep-
resentation with flipping (where the subscript indicates the branch-swapping
algorithm); MRP = matrix representation with parsimony; MRP∗ = bootstrap
weighted matrix representation with parsimony, STBSEPT = source-tree bootstrap
based on the set of equally parsimonious source trees, STBSMRC = source-tree
bootstrap based on the set of majority-rule consensus of equally parsimonious
source trees, HBS = hierarchical bootstrap, HBS∗ = scaled hierarchical bootstrap.

The shading scheme corresponds to that used in Figure 6: Cells with dark
shading pertain to estimates derived from the set of strict consensus source trees,
medium shading indicates estimates derived from the set of majority-rule con-
sensus source trees, and un-shaded cells indicate estimates derived from the set
of bootstrap source trees.

A2-Source-tree partition set = all DNA | morphology; B3-source-tree partition
set A = morphology | atpB | DNA compliment 1; C3-source-tree partition set B =
morphology | rbc L | DNA compliment 2); D4-source-tree partition set = mor-
phology | atp B | rbc L | DNA compliment 3.

estimates on these plots does not reflect their topological
disparity.

Three points warrant comment. First, estimates ob-
tained using the various bootstrapping approaches
tended to outperform those derived with conventional
supertree methods (Fig. 6). That is, they produced
supertrees that more closely resembled the topology de-
rived by simultaneous analysis. To some extent, this re-
sult is conservative, as the strict consensus of equally
optimal supertree estimates derived from conventional
methods tended to be highly unresolved (owing to con-
flict among the equally optimal supertrees; Table 2).
Second, the relative performance of the conventional su-
pertree methods in these experiments was somewhat
surprising. For example, the poor performance of MRF
in our empirical experiments contradicts previous simu-
lation studies in which MRF consistently outperformed
other supertree approaches (e.g., Chen et al., 2002, 2003;
Eulenstein et al., 2004). This apparent anomaly may stem
from our combination of strongly conflicting trees with
identical terminal taxa. Finally, the hierarchical boot-
strapping estimates tended to outperform the other boot-
strap supertree approaches.

Bootstrap proportions.—We evaluated the ability of the
alternative bootstrapping procedures to quantify phylo-

genetic uncertainty in supertrees by plotting the boot-
strap proportions estimated by these methods against
those obtained by simultaneous bootstrap analysis
(Fig. 7). A total of four bootstrapping approaches were
compared. Source-tree bootstrapping was applied in two
ways: by drawing from the entire set of equally parsi-
monious trees for each component matrix (EPT-based
source-tree bootstrapping) and by sampling from the
set of majority-rule summaries of those trees (MRC-
based source-tree bootstrapping). We also evaluated
both scaled and unscaled variants of the hierarchical
bootstrap. Comparisons were made for each of the four
data partition sets.

Two generalities emerge from these empirical experi-
ments. First, all four bootstrap approaches produced es-
timates of nodal support in the supertree that tended
to be inflated relative to those based on simultaneous
bootstrap analysis. Second, the four bootstrap supertree
approaches are not equally biased but were consistently
ranked as follows: MRC-based source-tree bootstrapping
was the most inflated, followed by EPT-based source-
tree bootstrapping, with scaled and unscaled hierarchi-
cal bootstrapping producing the least biased estimates
of supertree nodal support values.

A more detailed look at Dipsacaceae.—Here, we focus on
a subset of the empirical data—relationships and nodal
support values estimated within the Dipsacaceae clade—
to illustrate in more detail how the various bootstrapping
approaches cope with this locus of phylogenetic conflict
(Fig. 8). Results of the simultaneous analysis strongly
support the topology (V(T(S(P,D)))) for Valerianaceae,
Triplostegia, Scabiosa, Pterocephalus, and Dipsacus. The
four partition sets each include one large partition
comprising the bulk of the data (i.e., all DNA, and DNA
compliments 1, 2, and 3) that strongly supports the topol-
ogy found in the simultaneous analysis, and one to three
smaller partitions (i.e., morphology, rbcL , and/or atpB)
that partially conflict with the topology found in the
simultaneous analysis. For instance, these smaller parti-
tions all provide varying support for (D(S,P)) but conflict
somewhat on the position of T: morphology places it
with V, atpB places it with (D,S,P), and rbcL is equivocal,
placing it in a polytomy with V and (D(S,P)) (Fig. 6).

Supertrees were estimated for each of the four sets of
source-tree topologies using six estimation methods or-
ganized in five columns in Figure 8; from left to right:
MRP, bootstrap-weighted MRP, MRC-based source-tree
bootstrapping, EPT-based source-tree bootstrapping, hi-
erarchical bootstrapping, and scaled hierarchical boot-
strapping.

In general, the inferred supertree topology increas-
ingly resembles the simultaneous analysis tree from
left to right across the row. Supertree estimates under
MRP and MRC-based source-tree bootstrapping tend
to simply resolve conflict in favor of the most frequent
source-tree topology, whereas bootstrap-weighted MRP
tends to favor the resolution sanctioned by the largest
sum of bootstrap proportions among the conflicting
source-tree nodes. When no clear topological majority
exists among the set of source trees (e.g., the 2-partition
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FIGURE 7. Correspondence between bootstrap proportions based on a simultaneous analysis and those estimated by the four bootstrapping
approaches for each of the four data partition sets. A line was fitted through each set of points using linear regression. Unbiased estimates of
supertree bootstrap proportions would fall along the diagonal. Abbreviations for the bootstrapping procedures: HBS = hierarchical bootstrap,
HBS∗ = scaled hierarchical bootstrap; STBSEPT = source-tree bootstrapping based on the set of equally parsimonious source trees; STBSMRC =
source-tree bootstrapping based on the set of majority-rule consensus of equally parsimonious source trees.

set in Fig. 8; see also Figs. 4 and 5), MRP tends to sum-
marize the conflict as a polytomy, bootstrap-weighted
MRP will resolve the conflict in favor of the more
strongly supported source-tree nodes, and MRC-based
source-tree bootstrapping stochastically chooses among
the conflicting topologies. Overall, these three meth-
ods essentially behaved like conventional consensus
techniques in these analyses. By contrast, EPT-based
source-tree bootstrapping and both forms of hierarchi-
cal bootstrapping (scaled and unscaled) recovered the

simultaneous analysis topology over all data partition
sets.

Although they performed similarly with respect to re-
covering the target topology, the latter four bootstrap ap-
proaches differed in their ability to approximate the boot-
strap proportions estimated by simultaneous analysis.
Again, the estimated supertree bootstrap proportions in-
creasingly approximated those derived by simultaneous
bootstrap analysis from left to right across the row, with
scaled hierarchical bootstrapping performing best.
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FIGURE 8. Dipsacaceae as a locus of phylogenetic conflict. The phylogeny estimated from a simultaneous analysis of the combined data
is depicted at the top of the figure, and those based on conventional analyses of the various data partitions associated with the four partition
schemes are arranged in rows on the left side of the figure. Each of the resulting four sets of source trees were variously combined using six
supertree methods arranged in five columns in the adjacent rows to the right side of the figure. Abbreviations for taxon names: V, Valerianaceae;
T, Triplostegia; D, Dipsacus; S, Scabiosa; P, Pterocephalus.

DISCUSSION

Nonparametric Bootstrapping, Supertree Topology, and
Phylogenetic Uncertainty

Bootstrap-weighted MRP has the potential to improve
the accuracy of supertree estimation by relaxing the
implicit (and unrealistic) assumption that all source-tree
nodes are equally supported by the underlying charac-
ter data. However, this approach will only enhance the
accuracy of supertree topologies to the extent that an
equally unrealistic assumption holds: that bootstrap pro-
portions are comparable across component data sets. As
illustrated in the hypothetical and empirical examples,
bootstrap support values are matrix specific (Hillis and
Bull, 1993; Efron et al., 1996). Consequently, bootstrap-
weighted MRP can in some cases decrease the correspon-
dence between supertree topologies and those based on
simultaneous analysis. In any event, bootstrap-weighted

MRP is less than ideal because it cannot quantify phylo-
genetic uncertainty in estimated supertree topologies.

Source-tree bootstrapping provides an effective means
of assessing the level of conflict among observations rel-
evant to conventional supertree estimation methods: the
sample of source-tree topologies. Under certain condi-
tions, this approach may increase the correspondence
between supertree and simultaneous tree topologies
and provide estimates of the phylogenetic uncer-
tainty in supertrees. However, as a solution to the
data-dissociation problem, source-tree bootstrapping
is essentially a half measure. Because source-tree
bootstrapping only reaches back to the topological
summaries of the component matrices, much of the com-
plexity in the underlying data will remain unavailable
to the supertree inference, which is apt to confound esti-
mates of supertree topology and nodal support. For ex-
ample, source-tree bootstrapping is expected to perform
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poorly under weak-signal enhancement scenarios (Bar-
rett et al., 1991); i.e., when congruent sub-signals in
two or more component matrices are manifest as ho-
moplasy when the data sets are analyzed separately but
emerge as the dominant signal when the component ma-
trices are combined in a simultaneous analysis (Fig. 4).
Furthermore, the reliance of this approach on source-tree
topologies is also partially responsible for the observed
bias in the estimated bootstrap proportions: ignoring
much of the noise within the component data matrices
causes bootstrap proportions to be correspondingly in-
flated (Figs. 7 and 8).

The failure of this approach to adequately address
the data dissociation problem also explains the discrep-
ancy between the results obtained with EPT-based versus
MRC-based source-tree bootstrapping. Our experiments
suggest that supertree topologies and nodal support
values derived using source-tree bootstrapping more
closely approximate those estimated by simultaneous
analysis when it draws from the entire set of equally
parsimonious source trees rather than from a set of con-
sensus summaries of those equally parsimonious trees
(i.e., EPT-based consistently outperformed MRC-based
source-tree bootstrapping in our analyses). This is largely
due to the relationship between the level of homoplasy
within a data matrix and the number of equally parsi-
monious trees estimated from it. Analyses of homoplasy-
rich data sets tend to produce a greater number of equally
parsimonious trees than those derived from relatively
signal-rich data sets. As in conventional bootstrapping,
each tree in the bootstrap sample is reciprocally weighted
by the number of equally parsimonious trees of which
it is an instance, such that more noisy data sets exert a
weaker influence on the estimated supertree. For exam-
ple, combining the two source-tree partitions for Dip-
sacaceae involves source trees estimated from two par-
titions: all DNA and morphology, for which one and
77 equally parsimonious trees were found, respectively
(Fig. 8 and Table 1). When source-tree bootstrapping
is used to estimate a supertree from the two conflict-
ing majority-rule consensus trees, the supertree is (by
chance) identical to the morphological tree. By contrast,
when source-tree bootstrapping is applied to the entire
set of equally parsimonious trees for both partitions, the
supertree overwhelmingly favors the DNA tree.

Accordingly, the advantage of EPT-over MRC-based
source-tree bootstrapping stems from the fact that the
number of equally parsimonious trees associated with
the component matrices allows some of the complexity
of the underlying source-tree data to seep through. Al-
though EPT-based source-tree bootstrapping improves
upon MRC-based source-tree bootstrapping (and other
conventional supertree methods), it is surpassed by
supertree methods that more accurately describe and di-
rectly incorporate complexity in the underlying charac-
ter data (such as hierarchical bootstrapping, which relies
on conventional bootstrapping to assay complexity in
the data). Furthermore, practical considerations are apt
to complicate the use of source-tree bootstrapping as a
means of improving the accuracy of—and/or assessing

uncertainty in—supertree estimates. For example, appli-
cation of source-tree bootstrapping to a set of source trees
with moderate to low levels of taxonomic overlap could
result in a bootstrap sample of trees with no overlapping
taxa, in which case no meaningful supertree could be
estimated. Second, it may not be possible to construct
a majority rule consensus supertree when source-tree
bootstrapping generates a profile of supertrees that dif-
fer in their taxon sets (O. R. P. Bininda-Emonds, personal
communication). Clearly, these are potentially serious
limitations of source-tree bootstrapping that cannot be
addressed given our experimental design.

Although source-tree bootstrapping may prove to be
of limited utility for improving the performance of—
or assessing phylogenetic uncertainty in—supertree es-
timates, it may nevertheless find useful application to
other problems. For example, because it effectively as-
sesses conflict among a set of topologies, source-tree
bootstrapping might be used to evaluate the level of con-
flict in the gene-tree/species-tree problem (e.g., Burleigh
et al., 2006).

More so than the other approaches considered here,
hierarchical bootstrapping is able to accommodate com-
plexity in the underlying data. Conceptually, the hierar-
chical bootstrap is analogous to spectral decomposition:
the primary bootstrap provides a prism that arrays com-
plex patterns of character covariation in the component
data matrices, allowing weaker signals to be reconsti-
tuted as spectra within the bootstrap profile, which pro-
vides an opportunity for a greater diversity of trees to
contribute to the supertree estimate. The supertree algo-
rithm (here MRP) provides a lens that focuses randomly
sampled replicate sets of spectra along the bootstrap su-
pertree profile. It is presumably because the hierarchical
bootstrap reaches much closer to the primary character
data that estimates of topology and nodal support de-
rived under this approach corresponded most closely to
those inferred by simultaneous analysis. As suggested by
the consistently inflated bootstrap values, however, even
the hierarchical bootstrap apparently fails to completely
capture the complexity of the underlying character
data.

Of course, it cannot be stressed too strongly that these
insights were obtained from a limited set of empiri-
cal analyses performed under somewhat simplified con-
ditions (complete taxonomic overlap among all source
trees, etc.). Additional empirical and simulation studies
will be necessary to assess the extent to which the find-
ings obtained in the present study might be generalized
to more complex supertree estimation scenarios.

Modularity, Portability, and Practicality

As mentioned previously, the bootstrapping ap-
proaches described here are not specifically tied to the
MRP method, but instead are inherently modular pro-
cedures that could be interpolated with any supertree
algorithm. Neither are the bootstrap procedures intrin-
sically reliant upon source-tree bootstrap profiles. For
example, the hierarchical-bootstrapping and source-tree
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bootstrapping approaches could be ported to a Bayesian
framework simply by drawing from the set of source-
tree posterior densities to estimate the posterior prob-
abilities of clades in the supertree (this is an area of
current research by J. Huelsenbeck and colleagues; per-
sonal communication to BRM). In light of apparent dis-
crepancies between bootstrap proportions and posterior
probabilities (e.g., Alfaro et al., 2003; Cummings et al.,
2003; Douady et al., 2003; Erixon et al., 2003; Yang and
Rannala, 2005), it may be desirable to have both para-
metric and nonparametric estimates of uncertainty in
supertrees.

Given that supertrees are valued for their relative
computational efficiency, one possible reaction to the
proposed bootstrap procedures is that they seem pro-
hibitively expensive. We would address this concern as
follows. First, the performance of the bootstrap proce-
dures is likely to scale with the attendant computational
burden, such that a greater computational investment
is likely to pay dividends in the form of more accurate
supertree estimates. Second, although MRP (like many
parsimony-based phylogenetic inference algorithms) is
NP-complete (Graham and Foulds, 1982), recent devel-
opments in supertree estimation have led both to heuris-
tic parsimony-based algorithms that are fixed-parameter
tractable (Chen et al., 2002) and to more efficient algo-
rithms with polynomial running times (e.g., Semple and
Steel, 2000; Page, 2002); use of these algorithms could
greatly ameliorate the computational burden of the pro-
posed bootstrapping approaches. Finally, the supertree
bootstrapping approaches are inherently suited to distri-
bution in a parallel processing environment.

The methods described in this paper have been
implemented by SAS in the freely available program,
tREeBOOT (Smith and Moore, in press). This command-
line Java application (which will run on Macintosh
OS X, Windows, Linux, and Unix operating systems)
can perform bootstrap-weighting, source-tree bootstrap-
ping, and hierarchical bootstrapping with MRP, MinCut,
and modified MinCut supertree algorithms. The pro-
gram enables source-tree bootstrapping and hierarchi-
cal bootstrapping approaches based both upon bootstrap
profiles (as described herein) and also posterior proba-
bility densities of source trees to estimate posterior prob-
abilities of nodes in the supertree (as mentioned above).
The tREeBOOT distribution bundle may be obtained at
http://blackrim.org/programs.html.

Implications and Applications

Although additional research is clearly needed to ex-
plore the generality of our findings, the various bootstrap
approaches appear to have promise as a means for both
improving the accuracy of supertree estimation and for
assessing the uncertainty in supertree estimates. These
preliminary results have practical and conceptual impli-
cations. First, the ability to gauge uncertainty in supertree
estimates would greatly enhance their appeal in evolu-
tionary studies—e.g., of character evolution, historical
biogeography, coevolution, diversification rates—by al-

lowing the accommodation of phylogenetic uncertainty.
For example, estimates of character evolution could be
evaluated over the bootstrap profile of supertrees to es-
timate the confidence interval on the inference.

Second, although simulation studies have begun
the important work of characterizing the behavior of
a few supertree methods (e.g., Bininda-Emonds and
Sanderson, 2001; Chen et al., 2002; Eulenstein et al.,
2004), many methods remain poorly characterized (e.g.,
Wilkinson et al., 2001; Gatesy et al., 2002; Goloboff and
Pol, 2002; Pisani and Wilkinson, 2002), an issue com-
pounded by the frenetic pace at which new supertree
methods are being proposed (e.g., Bininda-Emonds,
2004a ). Furthermore, simulation studies of these meth-
ods constitute a nontrivial undertaking. Such studies
provide meaningful results to the extent that conclu-
sions are based on a thorough exploration of a simu-
lated parameter space and that this space adequately
approximates what the method will encounter in the
analysis of real data. For this reason, simulation stud-
ies of the supertree inference problem are notoriously
difficult owing to the high dimensionality of the rele-
vant parameter space. However, if we are willing to ac-
cept the premise that the level of accuracy achieved by
simultaneous analysis provides a reasonable benchmark
against which the performance of supertree methods can
be compared, then the experimental design adopted in
the present study could provide an empirical counter-
part to simulation studies for exploring the relative per-
formance of available supertree methods.

As a final point, we note that one of the examples
presented here (Fig. 1; based on Barrett et al., 1991)
was previously used by Pisani and Wilkinson (2002)
to demonstrate the correspondence of MRP estimates
to those obtained by conventional consensus methods,
prompting their conclusion that MRP should be clas-
sified as a “taxonomic congruence” method. Other au-
thors have countered that MRP—by virtue of permitting
the combination of otherwise incompatible data types—
corresponds to a “total evidence” method (e.g., Bininda-
Emonds and Bryant, 1998). As we have shown, however,
MRP can behave either as a consensus method or—by in-
terpolating various bootstrapping approaches—can ap-
proximate simultaneous analysis.

We believe that the conventional total evi-
dence/taxonomic congruence dualism oversimplifies
the association between character data and (super) tree
topology, effectively rendering it as a binary relation-
ship. Instead, the degree of correspondence between
character data and tree topology appears to fall along a
spectrum: this continuum is bracketed by direct consen-
sus methods at one end and by simultaneous analysis
of the primary data at the other, with conventional and
bootstrap supertree approaches falling between these
two extremes. Of the various approaches considered
here, hierarchical bootstrapping appears to hold the
most promise both to increase the correspondence of
supertree topologies to the primary character data
and to evaluate phylogenetic uncertainty of supertree
estimates.
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