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e Premise of the study: Recent analyses employing up to five genes have provided numerous insights into angiosperm phylogeny,
but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angio-
sperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses.

e Methods: We conducted two primary analyses based on 640 species representing 330 families. The first included 25260
aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The
second included 19 846 aligned bp from 13 genes (representing only the nucleus and plastid).

e Key results: Many important questions of deep-level relationships in the nonmonocot angiosperms have now been resolved
with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms
(Mesangiospermae), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae +
Eudicotyledoneae]. Eudicotyledoneae contains a basal grade subtending Gunneridae. Within Gunneridae, Gunnerales are sis-
ter to the remainder (Pentapetalae), which comprises (1) Superrosidae, consisting of Rosidae (including Vitaceae) and Saxi-
fragales; and (2) Superasteridae, comprising Berberidopsidales, Santalales, Caryophyllales, Asteridae, and, based on this
study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae,
most deep-level relationships are resolved with strong support.

e Conclusions: Our analyses confirm that with large amounts of sequence data, most deep-level relationships within the angio-
sperms can be resolved. We anticipate that this well-resolved angiosperm tree will be of broad utility for many areas of biology,
including physiology, ecology, paleobiology, and genomics.

Key words: angiosperms; bioinformatics; large data sets; molecular systematics; RAXML; Superasteridae; supermatrix;
Superrosidae.
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It has been a decade since the 567-taxon, three-gene (rbcL,
atpB, and 18S rDNA) parsimony-based phylogenetic analysis
of angiosperms was published (Soltis et al., 1999, 2000). Since
that time, other studies have expanded sampling of additional
genes or used alternative methods to evaluate the results of that
three-gene study. Hilu et al. (2003) conducted a broad analysis
of angiosperms based on matK sequences, with results that
agreed closely with the three-gene topology. Additional prog-
ress was achieved by Davies et al. (2004) by constructing a
supertree for angiosperms. Soltis et al. (2007) undertook a
Bayesian analysis of the 567-taxon, three-gene data set and ob-
tained a topology nearly identical to that obtained with parsi-
mony. More recently, Bell et al. (2010) analyzed this same
three-gene data set using a Bayesian relaxed clock model to si-
multaneously infer topology and divergence times within an-
giosperms and found results similar to Soltis et al. (2007). In
addition, Burleigh et al. (2009) inferred angiosperm phylogeny
using five genes for the same 567 taxa analyzed in Soltis et al.
(1999, 2000). Although the five-gene matrix had significantly
more missing data (27.5%) than the three-gene matrix (2.9%),
the five-gene analysis resulted in higher levels of bootstrap sup-
port across the tree.

Recent phylogenomic analyses have shown the value of con-
structing data sets of many genes to infer deep-level angiosperm
phylogeny. Some of these analyses have employed nearly com-
plete plastid genome sequence data (e.g., Leebens-Mack et al.,
2005; Jansen et al., 2007; Moore et al., 2007, 2010), but all
have been limited in sampling to fewer than 100 taxa. These
and other studies based on many genes but focused only on
major angiosperm clades (e.g., Schonenberger et al., 2005; Jian
et al., 2008; H. Wang et al., 2009; Wurdack and Davis, 2009;
Brockington et al., 2010; Tank and Donoghue, 2010) showed
that with very large amounts of data (i.e., 13 to 83 genes), many,
if not most, deep-level questions of angiosperm phylogeny can
be resolved.

While the three- and five-gene analyses of 567 taxa have
broad taxonomic coverage, support for many portions of the
framework of angiosperm phylogeny is low in these studies.
For example, relationships among members of Mesangiospermae
and of Pentapetalae remain unclear. Conversely, studies em-
ploying complete plastid genome sequences have deep gene
coverage and strong internal support, but taxonomic coverage
is often sparse. Hence, it is important to assemble a data set
having both broad taxonomic coverage as well as numerous
genes. In the hope of further improving our understanding of
angiosperm phylogeny, we have sequenced deeply over a broad
representation of angiosperms. We constructed a 17-gene data
set for 640 species representing 640 genera, 330 families, and
58 of 59 orders (sensu APG III, 2009) using genes that repre-
sent all three plant genomic compartments (nucleus, plastid,
and mitochondrion).

One goal of the angiosperm Assembling the Tree of Life
(AToL) project was to assess morphological synapomorphies
for each of the major clades of angiosperms as well as across
angiosperms as a whole. We here also provide putative mor-
phological synapomorphies of Saxifragales, although a more
detailed morphological exploration of this clade is presented
elsewhere (Carlsward et al., unpublished manuscript). This
study of Saxifragales represents the first treatment in a series
of analyses for large clades of angiosperms that will address
morphological synapomorphies and the clades they support
(W. S. Judd et al., unpublished data).
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MATERIALS AND METHODS

Data sets—DNA samples for most of the species used here were extracted
from either fresh or silica-dried material following the general method of Doyle
and Doyle (1987) or modifications thereof that employ liquid nitrogen and
higher CTAB concentrations (e.g., Soltis et al., 1991; Sytsma, 1994). We at-
tempted to use the same species and DNA samples across all of the genes ana-
lyzed here, although multiple species were sometimes used as necessary
placeholders to reduce missing data. Many of these DNA samples have been
used in earlier analyses (e.g., Chase et al., 1993; Soltis et al., 2000).

We constructed a 17-gene data set for 640 species (for a complete list of taxa,
voucher information, and GenBank numbers see Appendix S1, see Supple-
mental Data online at http://www.amjbot.org/cgi/content/full/ajb.1000404/DC1)
using genes from the nuclear, plastid, and mitochondrial genomes. Given
the potential problems inherent in phylogeny reconstruction using mtDNA se-
quences (e.g., RNA editing, Bowe and dePamphilis, 1996; horizontal gene
transfer or HGT, Bergthorsson et al., 2003), we also constructed a data set
without the mtDNA data, resulting in a matrix of 13 genes. For both data sets,
we used the following representatives of Acrogymnospermae (extant gymno-
sperms, sensu Cantino et al., 2007) as the outgroup: Cycas, Ginkgo, Gnetum,
Metasequoia, Pinus, Podocarpus, Welwitschia, and Zamia. Taxon sampling
across major clades of angiosperms was not uniform, with poorly resolved
clades (e.g., Malpighiales, Saxifragales) targeted for denser taxon sampling to
seek improved resolution. We also largely avoided parasitic clades (except
Orobanchaceae, Santalales, and Cuscuta), which can create analytical prob-
lems due to gene loss, accelerated molecular evolution, and horizontal gene
transfer (see Davis and Wurdack, 2004; Nickrent et al., 2004; Barkman et al.,
2007).

The following 17 genes were sequenced: 18S and 26S rDNA from the
nuclear genome; atpB, matK, ndhF, psbBTNH (four contiguous genes here treated
as one region), rbcL, rpoC2, rps16, and rps4 from the plastid genome; and atp1,
matR, nad5, and rps3 from the mitochondrial genome. The total length of the
aligned 17-gene matrix was 25260 bp and of the 13-gene matrix was 19 846 bp.
The percentage of missing data for the full data set was 41% and for the data set
without mtDNA data was 42%.

Alignment and phylogenetic analyses—All sequence data were stored and
managed in TOLKIN (Beaman and Cellinese, 2010). TOLKIN is a web appli-
cation, developed for distance collaboration as part of the Angiosperm Tree of
Life project, that allows users to access and share data in real time, as well as
automatically generate FASTA files and link to other relevant information (e.g.,
taxonomy and vouchers) and resources (e.g., GenBank, TreeBASE, and uBIO).
The sequences generated here were supplemented with those already available
in GenBank to obtain a more complete data set. GenBank sequences were re-
trieved using the PHLAWD package (Smith et al., 2009; http://code.google.
com/p/phlawd), and alignments of combined sequences were generated with
the program MAFFT (vers. 6.71; Katoh and Toh, 2008) at the DNA level using
the I-ins-i algorithm and default alignment parameters. MAFFT was chosen
because of its strong performance over a range of alignment scenarios (Golubchik
et al., 2007). Subsequent adjustments were made by eye when there were obvi-
ous alignment errors due to particularly divergent or “gappy” sequences. The
individual gene regions varied in the amount of missing data per site: 18S
rDNA (6%), 26S tDNA (15%), atpB (5%), atp1 (1%), matK (13%), matR (3%),
nad5 (4%), ndhF (20%), psbBTNH (19%), rbcL (4%), rpoC2 (21%), rpsl6
(26%), rps3 (10%), and rps4 (50%). Individual gene regions also varied in the
number of taxa with data in the combined analyses: 18S rDNA (78%), 26S
rDNA (57%), atpB (88%), atp1 (59%), matK (92%), matR (76%), nad5 (59%),
ndhF (80%), psbBTNH (54%), rbcL (98%), rpoC2 (63%), rps16 (35%), rps3
(62%), and rps4 (58%). Sites in the alignment with more than 50% missing
data were removed with the program Phyutility (Smith and Dunn, 2008;
see discussion in Castresana, 2000) to avoid regions of potentially problem-
atic ambiguous alignment caused by such broad sampling (Talavera and
Castresana, 2007).

Phylogenetic analyses using maximum likelihood (Felsenstein, 1973) were
conducted in the program RAXML (vers. 7.1; Stamatakis, 2006). For each data
set, we searched for the optimal tree, running at least 10 independent maximum
likelihood analyses; full analyses also consisted of at least 100 and up to 300
bootstrap replicates (Stamatakis et al., 2008). We conducted analyses on all
individual genes, the concatenated 17-gene data set, the concatenated 13-gene
data set (no mtDNA data), and genomic compartments (nucleus, plastid, and
mitochondrion). The GTRGAMMA substitution model was applied to
each gene independently. For analyses of all concatenated data sets, all genes
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were partitioned, and unlinked substitution models were applied to each gene.
Bootstrapped (BS; Felsenstein, 1985) trees were summarized as majority-rule
consensus trees with Phyutility (Smith and Dunn, 2008).

A series of maximum likelihood (ML) analyses was conducted on the com-
bined data sets, ultimately requiring approximately over 1 year of analysis time
and approximately 9 years of actual CPU time. Unexpected taxon placements
required close examination of the alignment and subsequent reanalysis when
problems were detected. For example, initial analyses indicated that the place-
ment of Polyosma (Escalloniaceae) differed dramatically when mtDNA data
were included vs. when they were omitted for this taxon (see Results). Parti-
tioned analyses suggested that the mtDNA signal for Polyosma was providing
a spurious placement. In our total evidence analysis (Kluge, 1989; Fig. 1, sum-
mary tree, and Fig. 2, complete cladogram; shown as a phylogram in Appendix
S1), we therefore omitted the mtDNA data for Polyosma. We subsequently se-
quenced the mitochondrial genes surveyed here for an additional sample of
Polyosma as well as for a second accession of Quintinia, the sister of Polyosma
in the trees that included mtDNA sequence data.

Maximum parsimony (MP) has not performed well on some recent large
angiosperm data sets; long-branch attraction has clearly played a role in previ-
ous analyses of deep-level relationships in angiosperms, especially in analyses
with limited taxon sampling (reviewed in Leebens-Mack et al., 2005; Soltis
et al., 2005, 2007; Burleigh et al., 2009). Given the current availability of ML
programs (e.g., RAXML) that can readily handle large data sets of the size em-
ployed here, we focused much of our data analyses on this approach. Nonethe-
less, we also conducted MP searches, using the parsimony ratchet (Nixon,
1999) approach to thorough and rapid tree searching. These analyses were run
in the program PAUP* 4.0b10 (Swofford, 2002). Ratchet files were generated
with PAUPRat (Sikes and Lewis, 2001) with 50 independent replicates of 500
iterations each. A majority-rule consensus of the best trees from each replicate
was generated. Bootstrapping was conducted by generating 500 bootstrap data
sets with the SeqBoot module of PHYLIP (Felsenstein, 2005) and running each
of these with a PAUPRat-generated ratchet file for a single 500-iteration search.
The parsimony searches took just over three CPU years of analysis time. It is
noteworthy therefore that, for this data set, a thorough MP analysis took longer
than a comparable ML analysis (each total evidence ML analysis required one
CPU year of analysis time).

For higher clades, we consistently use PhyloCode names (see Cantino et al.,
2007) whenever these are available; these names are always in italics (e.g.,
Pentapetalae, Mesangiopsermae, Rosidae, Fabidae, Malvidae). Note that Rosi-
dae (sensu Cantino et al., 2007) does include Vitaceae. Our use of family and
ordinal names follows APG III (2009) as a formal point of reference; for Caryo-
phyllales, we follow Cantino et al. (2007; hence, the use of italics), which
matches the APG III circumscription. For additional recent discussion on fami-
lies and their status, see the Angiosperm Phylogeny Website (Stevens, 2001
onward). We recognize that some broader family circumscriptions favored in
APG III are controversial and can obscure underlying diversity (e.g., Passiflo-
raceae s.1.), which would be evident with narrower circumscriptions. All align-
ments and trees have been deposited in TreeBASE (no. 11267; see http://www.
treebase.org/).

After all analyses were complete, the possibility was raised that the atpl
sequence of Cardiopteris was a contaminant. This sequence did not impact the
final placement of the genus, but as a result the questionable sequence was not
submitted to GenBank.

RESULTS

Each ML analysis of the 17- and 13-gene data sets took 20—
32 h on a 32-core (2.93 gHz Xeon x7350) machine with 128 gb
RAM, and analyses of individual genes took 1-11 h.

The best RAXML trees from analyses of the 17-gene and 13-
gene matrices are very similar, but with a few noteworthy dif-
ferences. The 17-gene tree has one major deviation in placement
from expected relationships (Polyosma; see above). However,
other differences are relatively minor, and in most cases the 17-
gene tree gives higher BS support than the 13-gene tree. Hence,
only the 17-gene tree (total evidence, but no mtDNA data for
Polyosma; e.g., Lecointre and Deleporte, 2005) is discussed be-
low. This tree (Fig. 1, summary tree) has been divided into sep-
arate, interconnected subtrees (Fig. 2a-1).
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The 17-gene tree (with mtDNA for all taxa, including Poly-
osma) and the 13-gene tree (without mtDNA) are presented as
online supplementary figures (Appendix S2 and Appendix S3,
respectively). Additional online supplementary figures are pro-
vided for the trees resulting from the analysis of each genomic
partition: nuclear rDNA tree (Appendix S4), plastid tree (Ap-
pendix S5), and mtDNA tree (Appendix S6), as well as the
single-gene trees (Appendices S7-S20; note that psbBNTH,
representing four genes, are combined in one tree). We also
provide a tree resulting from analysis of a reduced, 17-gene,
86-taxon data set (Appendix S21) for comparison with a recent
86-taxon tree based on complete plastid genome sequences
(Moore et al., 2010).

Finally, we also provide an MP total evidence topology, with
mtDNA for all taxa, except Polyosma (Appendix S22). As re-
viewed below, the MP topology (Appendix S22) is very similar
to the ML tree (Figs. 1, 2).

Taxon sampling is so dense, it is decisive for all possible to-
pologies in the sense of Steel and Sanderson (2010; see also
Sanderson et al., 2010). This means that there is sufficient taxon
coverage to avoid problems of lack of resolution due solely to
missing data (though lack of resolution stemming from insuffi-
cient sequence information may still be an issue).

DISCUSSION

Overview—DBroad phylogenetic analyses involving three to
five genes have provided important insights into angiosperm
phylogeny, but crucial portions of the backbone of the tree were
either not resolved or not well supported (e.g., relationships
among major lineages of Mesangiospermae and of Pentapeta-
lae). Use of large numbers of genes from nearly compete plas-
tid genome sequences established most deep branches of extant
angiosperm diversity with strong support, but taxon density
was low (Jansen et al., 2007; Moore et al., 2007, 2010). Here,
we have employed numerous genes as well as broad taxonomic
coverage. The general topology provided here is very similar to
recently published trees that include broad taxonomic coverage
of the angiosperms, albeit with fewer genes (e.g., Soltis et al.,
2000, 2007; Burleigh et al., 2009) or far fewer taxa and nearly
complete plastid genome sequences (e.g., Jansen et al., 2007;
Moore et al., 2007, 2010). However, the 17-gene tree is a sig-
nificant improvement in that it provides much higher levels of
support for deep-level relationships than obtained with either
three or five genes. Our analyses further support those topolo-
gies recovered using complete plastid genome analyses (but
based on fewer than 100 exemplars).

Within Acrogymnospermae, the two Gnetales included here
(Gnetum and Welwitschia) are embedded within the Coniferae
(conifers) and are sister to Pinaceae (BS = 81%) in any poten-
tial rooting other than one in which Gnetales are sister to all
other seed plants.

Within the angiosperms, Amborellaceae, Nymphaeales, and
Austrobaileyales are subsequent sisters to all other extant flow-
ering plants. These placements all receive BS support (BS)
>80%; Fig. 1) and are a result obtained across 17-gene and 13-
gene data sets. It is noteworthy, however, of the genome partitions,
the mtDNA data have Amborella + Nymphaeales (BS = 88%), the
cpDNA partition has Amborella + Nymphaeales (BS = 78%), and
the 18S/26S rDNA partition has Nymphaeales followed by
Amborella as sister to other angiosperms (BS < 50%; Appendices
S4-S6). Our interpretation of these results is that the support
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from this particular data set for the placement of Amborella is
not strong. Nonetheless, the placement of Amborella as sister to
all other extant angiosperms is well supported using complete
plastid genome sequences (e.g., Leebens-Mack et al., 2005;
Jansen et al., 2007; Moore et al., 2007), as well as in recent
analyses of numerous nuclear gene trees (Jiao et al., in press).

Following Amborellaceae, Nymphaeales, and Austrobailey-
ales, the monophyly of the remaining angiosperms (Mesan-
giospermae) received maximum support. Chloranthales are
sister to the magnoliid clade (Magnoliidae) with BS = 85%.
This clade of Magnoliidae + Chloranthales is in turn sister to
the remaining angiosperms. Monocotyledoneae (monocots),
Ceratophyllaceae, and Eudicotyledoneae (eudicots) form a
well-supported clade (BS = 86%) with Monocotyledoneae sis-
ter to a weakly supported clade (BS = 68%) of Ceratophyllaceae +
Eudicotyledoneae. These deep-level relationships agree with
those obtained using complete plastid genome sequences (Moore
et al., 2007).

Within Eudicotyledoneae, there is a grade of basal taxa; in
contrast to many previous studies, relationships among the
members of this basal grade are well supported. Successively
more distant sister groups from Gunneridae (= core eudicots)
are Buxaceae, Trochodendraceae, Proteales plus Sabiaceae,
and Ranunculales.

Within Gunneridae, Gunnerales are sister to the remainder of
this clade (BS = 99%), which constitute Pentapetalae. Penta-
petalae comprises (1) a well-supported (BS = 100%) “super-
rosid” clade, here named Superrosidae (see below), consisting
of Rosidae (including Vitaceae) and Saxifragales; and (2) a
well-supported (BS = 87%) “super-asterid” clade, here named
Superasteridae (see below), consisting of Berberidopsidales,
Santalales, Caryophyllales, Asteridae, and Dilleniaceae, whose
position here is at odds with other recent studies (see below).

The MP topology (Appendix S22) is similar to the ML tree
(Figs. 1, 2), but there are several noteworthy differences that
have also been reported in previous analyses involving MP and
ML on smaller data sets (see Soltis et al., 2005, 2007). For ex-
ample, in the MP tree, Ceratophyllaceae are sister to the Mono-
cotyledoneae rather than Eudicotyledoneae, as found with ML.
MP does recover the Superasteridae and Superrosidae clades,
but there are differences in relationships among members of
Superasteridae with MP and ML. For example, with MP, Dil-
leniaceae are sister to Caryophyllales (rather than sister to all
other Superasteridae, as found with ML). We will not discuss
the MP topology further.

Basal angiosperms—Our 17-gene analysis (Figs. 1, 2) places
Amborellaceae, followed by Nymphaeales, and then Austrobai-
leyales as well-supported sisters to all other extant angiosperms,
in agreement with a series of phylogenetic analyses that have
been based on an ever-increasing number of gene sequences
(reviewed in Leebens-Mack et al., 2005; Soltis et al., 2005).

Our results also agree with other analyses in providing strong
support (BS = 100%) for the placement of Hydatellaceae in
Nymphaeales as sister to other members of the clade (Saarela
et al., 2007). Trithuria has ascidiate carpel development, consis-
tent with placement in Nymphaeales, but as reviewed else-
where, this placement is important in that it greatly expands the
morphological diversity encompassed by Nymphaeales (Rudall
et al., 2007).

Following Amborella and Nymphaeales, an Austrobaileyales
clade (BS = 100%) of Schisandraceae, Austrobaileyaceae, and
Trimeniaceae is sister to all remaining angiosperms. Within
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Austrobaileyales, Austrobaileyaceae are sister to Trimeniaceae
+ Schisandraceae (including Illiciacae; see APG III, 2009).

Magnoliidae + Chloranthales—Chloranthaceae (the only
member of Chloranthales, APG III, 2009) are well supported
here as sister to Magnoliidae (BS = 85%). This same sister-
group relationship also emerged (with BS = 72%) from com-
plete plastid genome sequencing (Moore et al., 2010), but has
not been apparent in previous analyses involving three or five
genes (Soltis et al., 2000; Burleigh et al., 2009). Within Chlo-
ranthaceae, the relationships among the four genera [Hedyos-
mum, (Ascarina (Sarcandra + Chloranthus)] agree with the
results of focused analyses of the family (Qiu et al., 1999; Doyle
et al., 2003; Zhang and Renner, 2003; Eklund et al., 2004).

In agreement with other recent analyses (e.g., Zanis et al.,
2002; Hilu et al., 2003; Qiu et al., 1999, 2005; Soltis et al.,
2007; Moore et al., 2010), Magnoliidae comprises two well-
supported clades, each with BS = 100%: Magnoliales + Lau-
rales and Piperales + Canellales. Relationships within these
four clades also agree, for the most part, with previous analyses
and are summarized below.

Piperales consist of two well-supported clades: Piperaceae +
Saururaceae (BS = 100%) as sister to Aristolochiaceae + Lacto-
ridaceae (BS = 99%). The parasitic Hydnoraceae, also of Piper-
ales (APG III, 2009), were not included here. Canellales
comprise Canellaceae + Winteraceae.

In Magnoliales, Magnoliaceae are sister to the remaining
Magnoliales: Degeneriaceae + Myristicaceae are sister to Him-
antandraceae + [Eupomatiaceae + Annonaceae], albeit without
BS >50%. These results differ from the three-gene (Soltis et al.,
2000, 2007) and five-gene (Burleigh et al., 2009) analyses, as
well as focused studies on the clade (Sauquet et al., 2003), all of
which have placed Myristicaceae as sister to all other Magno-
liales. The problem with the placement of Myristicaceae here
appears to be the result of the rDNA data. Both plastid and
mtDNA place Myristicaceae as sister to all remaining Magno-
liales, following earlier analyses. However, the combined 18S +
26S rDNA tree places a strongly supported clade (BS = 94%)
of Myristicaceae plus Degeneriaceae (all with very long
branches) as embedded well within Magnoliales, sister to An-
nonaceae (Appendix S4). This result was not apparent in earlier
studies that included 18S rDNA (Soltis et al., 2000). However,
in this study, 18S rDNA placed Myristicaceae with Chloran-
thaceae (albeit without BS support >50%), and the 26S rDNA
data placed the family as indicated for the combined data set
with strong BS support.

Within Laurales, Calycanthaceae are well supported as sister
to the remainder of the clade, as in previous analyses (e.g., Qiu
et al., 1999; Soltis et al., 1999, 2000). The current analyses also
provide more resolution and support of relationships within the
remainder of Laurales than the three- and five-gene studies
(Soltis et al., 2000; Burleigh et al., 2009), although reasonable
resolution and support were obtained with six genes and mor-
phology (e.g., Renner, 1999). Our trees then divide the re-
maining Laurales into two subclades: (1) Lauraceae sister to
(Hernandiaceae + Monimiaceae), and (2) Siparunaceae sister
to (Atherospermataceae + Gomortegaceae). These same two
clades were recovered by Renner (1999), although the relation-
ships found here within the two clades are not identical to those
recovered in that study.

Monocotyledoneae—The monocots, or Monocotyledoneae,
are not extensively sampled here, in deference to the ongoing
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Fig. 2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a cladogram with mtDNA data removed for Polyosma.
This single large tree has been divided into a series of interconnected trees in which subclades are labeled 2a through 21; these designations match those
given in Fig. 1. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap

percentages.
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work of the Monocot AToL research group (see Givnish et al.,
2010). Nonetheless, the relationships depicted here within the
Monocotyledoneae mirror those produced in multigene phylo-
genetic analyses focused on the clade (e.g., Chase et al., 2006;
Graham et al., 2006). On a broad scale, Monocotyledoneae is
well supported (BS = 100%), with Acoraceae (Acorales), fol-

Eudicotyledonae

Ceratophyllum Ceratophyllaceae
Saccharum
Zea

Poaceae
Oryza
Hordeum
Stegolepis Rapateaceae
Sparganium
Typha Typhaceae
Vriesea Bromeliaceae
Maranta Marantaceae
Musa Musaceae
Strelitzia Strelitziaceae

Tradescantia Commelinaceae
Philydrum Philydraceae
Elaeis
Chamaedorea
Agave
Yucca
Lomandra
Asparagus
Beaucarnea

Allium — Amaryllidaceae
Xanthorrhoea Xanthorrhoeaceae

Arecaceae

Asparagaceae

Iris Iridaceae
Blandfordia Blanfordiaceae
Phalaenopsis

Oncidium Orchidaceae
Lilium Liliaceae
Smilax Smilacaceae
Trillium Melanthiaceae

Carludovica Cyclanthaceae

Croomia Stemonaceae
Dioscorea  Dioscoreaceae
Triglochin ~ Juncaginaceae

Potamogeton Potamogetonaceae
Alisma Alismataceae

Hydrocharis Hydrocharitaceae
Pleea
Tofieldia
Spathiphyllum
Xanthosoma

Lemna

Orontium

Acorus Acoraceae

|Toﬁe|diaceae

Araceae

Magnoliidae + Chloranthales

Basalmost clades (Amborellaceae, Nymphaeales, Austrobaileyales)

Fig. 2. Continued.

Ceratophyllales

Poales

Zingiberales

Commelinales

Arecales

Asparagales

Liliales

Pandanales

IDioscoreales

Alismatales

| Acorales

[Vol. 98

Monocotyledonae

lowed by Alismatales, each well supported (BS = 100%) as
subsequent sisters to all other monocots (Petrosaviales were not
sampled). A clade of Dioscoreales + Pandanales (BS = 95%) is
sister to the remaining Monocotyledoneae. Within this remain-
der, Liliales followed by Asparagales are sisters to Commelinidae
(i.e., commelinid clade; BS = 100%; Arecales, Zingiberales,
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Nandina .
Caulophyilum Berberidaceae
Menispermum .
) Menispermaceae
68 Tinospora
| Lardizabala Ranunculales
Decaisnea Lardizabalaceae
Sargentodoxa
Circaeaster Circaeasteraceae
100 Hypecoum
Dicentra Papaveraceae
Eschscholzia
Euptelea Eupteleaceae

Ceratophyllum Ceratophyllaceae |Ceratophyllales

Basal lineages

Fig. 2. Continued.

Arecales, Poales, and Dasypogonaceae, a family not included
here). Relationships within Commelinidae also agree with focused
analyses of Monocotyledoneae, with Arecales sister to Com-
melinales + Zingiberales; this clade is in turn sister to Poales.
Relationships obtained here within the larger Monocotyledon-
eae clades also largely agree with more focused analyses that
have included more taxa (see Chase et al., 2006; Graham et al.,
2006; Givnish et al., 2010).

Eudicotyledoneae—Basal eudicots—Basal eudicot relation-
ships parallel those in other broad analyses (e.g., Soltis et al.,
1999, 2000; Burleigh et al., 2009), albeit with higher BS sup-
port here. Ranunculales (BS = 100%) are sister to remaining
Eudicotyledoneae, which form a clade with strong support (BS =
100%); Ranunculales are then followed by a clade of Sabi-
aceae + Proteales (BS = 59% in total evidence tree; 65% with-
out mtDNA data); a similar sister-group relationship was
recovered with strong support (BS = 80%) with complete plas-
tid genome data (Moore et al., 2010). Following Proteales, both
analyses provided strong support for the placements of Trocho-
dendraceae (BS = 100%) followed by Buxaceae (BS =98%), as
subsequent sisters to the core eudicots (Gunneridae). The same
relationships were recovered by Moore et al. (2010).

Relationships within the basal eudicot clades are generally
well resolved and supported. Within Ranunculales, Eupte-
leaceae are sister to the remaining taxa (BS = 76%), followed
by Papaveraceae, which are well supported (BS = 100%) as

sister to the rest of the clade. The remaining Ranunculales form
two clades: (1) Circaeasteraceae + Lardizabalaceae (BS =78%),
and (2) Menispermaceae sister to (Berberidaceae + Ranuncu-
laceae) (BS = 100%). These results are comparable to most re-
cent analyses (e.g., Kim et al., 2004; W. Wang et al., 2009),
although there has been disagreement in terms of the sister
group to all other Ranunculales. In some analyses, Papaver-
aceae have appeared in this position (Soltis et al., 2000), whereas
in other studies it has been Eupteleaceae (Kim et al., 2004;
W. Wang et al., 2009).

Within Proteales, Nelumbonaceae are sister to Platanaceae +
Proteaceae (with BS = 100%) as in other molecular analyses;
recent investigations of floral morphology also indicate simi-
larities between Proteaceae and Platanaceae (von Balthazar and
Schonenberger, 2009).

Gunneridae—Gunnerales are sister to all other core eudicots
(i.e., Pentapetalae) with BS = 100%. Pentapetalae, in turn,
comprises: (1) the Superrosidae, consisting of Rosidae (in-
cluding Vitaceae) and Saxifragales (BS = 100%); and (2) the
Superasteridae, consisting of Berberidopsidales, Santalales,
Caryophyllales, Asteridae, and possibly Dilleniaceae (BS =
97%).

Superrosidae—Superrosidae consists of Saxifragales as
sister to a well-supported (BS = 85%) Rosidae; Rosidae
comprises Vitaceae as sister to Malvidae + Fabidae (see
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Asteridae

Pereskia
Opuntia
Portulaca Portulacaceae
Talinum Talinaceae
Alluaudia o
Calyptrotheca | Didieraceae
Basella Basellaceae
Halophytum Halophytaceae
Claytonia  Montiaceae
Mollugo Molluginaceae
Bougainvillea
Mirabilis
Rivina Phytolaccaceae
Phytolacca  Phytolaccaceae
Sarcobatus  Sarcobataceae
Gisekia Gisekiaceae
Lampranthus
Delosperma
Barbeuia Barbeuiaceae

Limeum Limeaceae
Stegnosperma Stegospermataceae
Celosia
Beta
Spinacia
Phaulothamnus Achatocarpaceae
Stellaria Caryophyllaceae

Physena Physenaceae
Asteropeia Asteropeiaceae
Simmondsia ~ Simmondsiaceae
Rhabdodendron Rhabdodendraceae
Fagopyrum
Bistorta
Polygonum
Plumbago
Limonium
Frankenia Frankeniaceae
Tamarix Tamaricaceae
Dioncophyllum
Triphyophyllum
Ancistrocladus Ancistrocladaceae
Drosophylium Drosophyllaceae
Drosera Droseraceae
Nepenthes ~ Nepenthaceae
Berberidopsis Berberidopsidaceae
Aextoxicon Aextoxicaceae
Schoepfia ~ Schoepfiaceae
Gaiadendron Loranthaceae

Opilia Opiliaceae

Santalum Santalaceae

Ximenia “Olacaceae”

Heisteria “Olacaceae”

Tetracera
Hibbertia
Dillenia

Cactaceae

Nyctaginaceae

Aizoaceae

Amaranthaceae

Polygonaceae

Plumbaginaceae

Dioncophyllaceae

Dilleniaceae

Continued.
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Campanulidae

Pedicularis Orobanchaceae
Phryma Phrymaceae
Paulownia Paulowniaceae
Lamium Lamiaceae
Verbena  Verbenaceae

Acanthus Acanthaceae
Pinguicula Lentibulariaceae
Byblis Byblidaceae
Catalpa  Bignoniaceae
Martynia  Martyniaceae
Sesamum Pedaliaceae
Antirrhinum Plantaginaceae
Scrophularia Scrophulariaceae
Halleria Stilbaceae
Calceolaria Calceolariaceae
Saintpaulia Gesneriaceae
Peltanthera unplaced

100
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Sphenoclea Sphenocleaceae
Hydrolea  Hydroleaceae
Montiniaceae
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100

Oncotheca Oncothecaceae
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Garrya Garryaceae

Icacina Icacinaceae
Arbutus Ericaceae

Cyrilla Cyrillaceae

Clethra Clethaceae
Sarracenia Sarraceniaceae
Actinidia Actinidiaceae
Galax Diapensiaceae
Styrax  Styracaceae
Camellia Theaceae

Androsace
Primula
Clavija
Maesa

Primulaceae

Fouquieria | Fouquieriaceae
Polemonium Polemoniaceae

1
100

100

Couroupita Lecythidaceae
Tetramerista Tetrameristaceae
Impatiens  Balsaminaceae
Marcgravia Marcgraviaceae

Petalonyx L
Mentzeiia |-0asaceae

Hydrangea Hydrangeaceae
Curtisia Curtisiaceae

76 [— Comus | Comaceae
Nyssa

Fig. 2. Continued.

ThomandersiaThomandersiaceae

i
L
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—
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Plocosperma Plocospermataceae

Ternstroemia Pentaphylacaceae
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Lamiales

Lamiidae

Gentianales

Solanales

Garryales

Ericales

Cornales
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remaining Campanulidae
Helianthus

Guizotia
Tagetes
Lactuca
Cichorium | Asteraceae
Tragopogon
Echinops
Gerbera
Barnadesia
Acicarpha
Moschopsis |Calyceraceae
Boopis
Goodenia
Scaevola
Dampiera
Fauria
Menyanthes
Nymphoides
Villarsia
Forstera
Stylidium
Donatia
Wittsteinia
Alseuosmia
Crispiloba
Platyspermation
Argophyllum
Corokia
Phelline Phellinaceae

Campanula

Trachelium

Cyphia

Dialypetalum Campanulaceae
Lobelia

Pseudonemacladus

Cuttsia
Abrophyllum
Carpodetus
Roussea
Pentaphragma Pentaphragmataceae
Valdivia

Forgesia

Escallonia

Tribeles  [Escalloniaceae
Anopterus
Eremosyne
Polyosma
Cardiopteris
Gonocaryum
Citronella
Gomphandra
Irvingbaileya
Grisollea
Phyllonoma phyllonomaceae
Helwingia  Helwingiaceae
llex Aquifoliaceae
Other taxa

Goodeniaceae

Menyanthaceae

Stylidiaceae

Alseuosmiaceae

Argophyllaceae

Rousseaceae

Cardiopteridaceae

Stemonuraceae

Fig. 2. Continued.

Asterales

Escalloniales

Aquifoliales
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Valerianella
Fedia
Centranthus
Valeriana
Nardostachys
Patrinia
Pterocephalodes
Dipsacus
Scabiosa
Triplostegia
Acanthocalyx
Morina
Cryptothladia
Zabelia
Kolkwitzia
Dipelta

Abelia

Linnaea
Triosteum
Leycesteria
Symphoricarpos
Lonicera
Heptacodium
Weigela
Diervilla
Tetradoxa
Adoxa
Sinadoxa
Sambucus
Viburnum
Sphenostemon
Paracryphia
Quintinia
Anethum
Apium
Coriandrum
Angelica
Daucus
Heteromorpha | Apiaceae
Arctopus
Sanicula
Azorella
Platysace
Mackinlaya
Myodocarpus
Delarbrea
Tetraplasandra
Pseudopanax
Polyscias
Schefflera
Tetrapanax
Hedera
Cussonia
Panax
Aralia
Hydrocotyle
Pittosporum
Sollya
Griselinia Griseliniaceae
Torricellia
Melanophylla
Aralidium
Pennantia Pennantiaceae

Brunia ;
. |Bruniaceae
Berzelia

Columellia
Desfontainia
Other taxa

Caprifoliaceae

Adoxaceae

Paracryphiaceae

Myodocarpaceae

Araliaceae

|Pittosporaceae

Torricelliaceae

|Columel|iaceae

Fig. 2. Continued.
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100— Haloragis
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Fig. 2. Continued.

Cantino et al., 2007). Complete plastid genome data (Moore
et al., 2010) as well as inverted repeat (IR) sequence data (Moore
et al., in press) also recover Superrosidae with strong support,
but relationships differ among the three constituent clades (Vi-
taceae, all remaining Rosidae, Saxifragales). Complete plastid
genome data suggest that Rosidae (excluding Vitaceae) are sis-
ter to Saxifragales + Vitaceae, whereas IR sequence data re-
cover the topology found here (Vitaceae sister to all remaining
Rosidae + Saxifragales). Focused studies of Superrosidae sug-
gest Saxifragales are sister to Vitaceae + all remaining Rosidae,
in agreement with the results here (see H. Wang et al., 2009).
The divergent results produced by analyses of complete plastid
genomes may be due to more limited taxon sampling in that
analysis compared to the IR analysis (244 taxa; Moore et al., in
press) and the present study.

We provide a formal definition of Superrosidae in Appendix 1.

Saxifragales—In the 17-gene tree, Peridiscaceae are sister to
all remaining Saxifragales, which are well supported (BS = 98%)

and form two major clades: (1) a weakly supported clade
(BS =59%) of Paeoniaceae + the “woody clade” (BS = 100%),
comprising Cercidiphyllaceae, Daphniphyllaceae, Altingiaceae,
and Hamamelidaceae, and (2) core Saxifragales (BS = 100%),
comprising two clades, each with BS = 100%: Crassulaceae +
Haloragaceae s.l. (i.e., Aphanopetalum, Tetracarpaeaceae,
Penthoraceae, and Haloragaceae) and the Saxifragaceae alli-
ance. Within the latter, Saxifragaceae + Grossulariaceae are
sister to Iteaceae + Pterostemonaceae. These results agree with
the focused analyses of Jian et al. (2008).

Morphological synapomorphies for Saxifragales include
basifixed anthers, usually with the filament attached at a basal
pit (but reversals to the dorsifixed condition occur in Ribes,
Pterostemon, and Iteaceae), and latrorse dehiscence. All but Pe-
ridiscaceae also may be united by follicle fruits, a homoplasious
character that is correlated with the ovaries being at least dis-
tally distinct. Additionally, the presence of violoid to theoid
teeth is possibly synapomorphic, but salicoid teeth occur in
Aphanopetalum, and nonglandular teeth occur in Hamamelis,
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Rosidae—Despite extensive progress in elucidating relation-
ships within the angiosperms, Rosidae has long stood out as the

Fig. 2.

Fabidae

Arabidopsis )
Brassica |Brassicaceae
Capparis Capparaceae
Reseda Resedaceae
Batis Bataceae
Floerkea Limnanthaceae

Carica Caricaceae
Tropaeolum Tropaeolaceae

Gossypium
Sterculia
Thymelaea Thymelaeaceae
Helianthemum Cistaceae
Anisoptera Dipterocarpaceae
Bixa  Bixaceae

Tapiscia Tapisciaceae
Dipentodon Dipentodontaceae
Ailanthus Simaroubaceae

Citrus Rutaceae

Swietenia Meliaceae

Cupaniopsis Sapindaceae
Schinus Anacardiaceae

Bursera Burseraceae

Nitraria Nitrariaceae

Picramnia Picramniaceae
Stachyurus  Stachyuraceae
Crossosoma Crossosomataceae
Staphylea  Staphyleaceae
Strasburgeria Strasburgeriaceae
Ixerba Ixerbaceae

Aphloia Aphloiaceae

Eucalyptus
Myrtus
Qualea \Vochysiaceae

Olinia Penaeaceae
Crypteronia Crypteroniaceae
Clidemia Melastomataceae
Lythrum  Lythraceae
Oenothera Onagraceae
Terminalia Combretaceae
Viviania  Vivianiaceae
Melianthus Melianthaceae
Geranium Geraniaceae
Vitis
Leea

| Malvaceae

|Myrtaceae

Vitaceae

Other taxa

Continued.

Brassicales

Malvales

Huerteales

Sapindales

Crossosomatales

Myrtales

Geraniales

Vitales
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largest poorly resolved major clade; deep relationships within
Rosidae have been particularly problematic. Our analyses agree
with recent analyses of this clade based on parsimony and ML
analyses of 12-gene (>20000 bp) and IR (>24 000 bp) data sets
for over 100 rosid species (H. Wang et al., 2009). Rosidae forms
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a well-supported clade (BS = 85%), in which Vitaceae are sister
to the remainder (BS = 100%), which in turn consists of two
large clades: (1) Fabidae, which includes the nitrogen-fixing
clade, Celastrales, Huaceae, Zygophyllales, Malpighiales, and
Oxalidales; and (2) Malvidae, which includes Tapisciaceae,
Brassicales, Malvales, Sapindales, Geraniales, Myrtales, Cros-
sosomatales, and Picramniaceae.

Malvidae—Within a well-supported Malvidae (BS = 97%),
a clade (BS = 79%) of Myrtales (BS = 100%) + Geraniales
(BS = 68%) is sister to the remaining Malvidae (BS = 99%).
Within the latter, a well-supported (BS = 100%) Crossoso-
matales are sister to the rest (BS = 100%), followed by Picram-
niaceae as sister to a clade (BS = 100%) of Sapindales
(BS = 100%) + Huerteales + (Malvales + Brassicales;
each with BS = 100%). These results are identical to recent

Celastrales, Oxalidales, Malpighiales

Myrica Myricaceae
Juglans Juglandaceae
Alnus  Betulaceae
Casuarina Casuarinceae
Chrysolepis
Quercus
Fagus
Nothofagus Nothofagaceae
Cucurbita
Cucumis
Begonia Begoniaceae

Datisca Datiscaceae

Coriaria Coriariaceae
Anisophyllea Anisophylleaceae
Urtica
Pilea
Morus Moraceae
Cannabis
Celtis
Zelkova Ulmaceae
Rhamnus
Ceanothus
Elaeagnus Elaeagnaceae
Prunus
Spiraea
Pisum
Medicago
Cicer
Lotus
Glycine
Albizia
Stylobasium Surianaceae
Quillaja  Quillajaceae
Polygala Polygalaceae
Krameria Krameriaceae
Guaiacum Zygophyllaceae
Other taxa

Fagaceae

Cucurbitaceae

|Urticaceae
| Cannabaceae

| Rhamnaceae

Rosaceae

Fabaceae

Continued.

Fagales

Cucurbitales

Rosales

Fabales

Zygophyllales
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Fabidae

topologies resulting from analyses focused on Rosidae (H. Wang
et al., 2009).

Over half of the families of Brassicales (Akaniaceae, Em-
blingiaceae, Gyrostemonaceae, Koeberliniaceae, Moringaceae,
Pentadiplandraceae, Salvadoraceae, Setchellanthaceae, and To-
variaceae) were not included in our study. Of those Brassicales
sampled, relationships agree closely with other analyses (see
Rodman et al., 1996, 1998; Hall et al., 2004). Tropaeolaceae
and Caricaceae are sisters to a well-supported Limnanthaceae
followed by Bataceae, as subsequent sisters to Resedaceae +
(Capparidaceae + Brassicaceae). Malvales are also poorly sam-
pled, with only 5 of 10 families included, but the topology
matches other studies (e.g., Bayer et al., 1999; Alverson et al.,
1999; H. Wang et al., 2009).

Within Sapindales, Nitrariaceae are sister to two clades (al-
though the sister-group relationship is not very well supported):
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(1) Burseraceae + Anacardiaceae, and (2) a clade (also without
BS >50%) of Sapindaceae sister to Meliaceae + (Simarou-
baceae + Rutaceae). These relationships largely agree with
other analyses (e.g., Gadek et al., 1996; Muellner et al., 2007);
different relationships were reported by H. Wang et al. (2009),
albeit with poor sampling and low support.

In Crossosomatales, there are two well-supported (BS = 100%)
clades: Staphyleaceae + [Stachyuraceae + Crossosomataceae]
and Aphloiaceae + Strasburgeriaceae (including Ixerbaceae).
In Myrtales, two major clades were recovered: one comprising
Onagraceae + Lythraceae and the other comprising the large
families Myrtaceae and Melastomataceae and associated
smaller families. These results are consistent with all previous
studies of the order (e.g., Conti et al., 1997; Sytsma et al., 2004).
The placement of Combretaceae, however, is not strongly sup-
ported, a result that is in agreement with previous studies.

Fabidae—Fabidae is well supported (BS = 99%), with Zy-
gophyllales sister (albeit with low support, BS = 57%) to two
major clades (each with BS = 100%): the nitrogen-fixing clade
(Cucurbitales, Fabales, Fagales, and Rosales) and a clade of
Celastrales, Oxalidales (including Huaceae; see APG III), and
Malpighiales (the COM group; Endress and Matthews, 2000).
These results agree with H. Wang et al. (2009).

In the COM clade, Celastrales (BS = 100%) are sister to a
clade (BS = 59%) of Malpighiales (BS =100%) + Oxalidales
(BS = 100%). This topology agrees with recent analyses (e.g.,
Soltis et al., 2007; H. Wang et al., 2009; Wurdack and Davis,
2009). Alternative topologies in which Malpighiales and Oxal-
idales did not form a clade have been strongly rejected (Wurdack
and Davis, 2009).

Nitrogen-fixing clade—Within the nitrogen-fixing clade
(BS = 100%), Fabales, Fagales, Rosales, and Cucurbitales all
have BS = 100%. Fabales appear as sister with strong support
(BS = 84%) to the remainder of the clade; Rosales are then
sister to a clade (BS = 78%) of Fagales + Cucurbitales. These
results are in agreement with recent studies (e.g., Soltis et al.,
2005, 2007; H. Wang et al., 2009).

In Rosales (Barbeyaceae and Dirachmaceae were not sam-
pled here), Rosaceae are sister to the remainder of the clade
(BS =100%), which forms two subclades: (1) a well-supported
clade (BS = 100%) of Ulmaceae sister to (Cannabaceae + (Ur-
ticaceae + Moraceae)) and (2) a clade (BS = 73%) of Elae-
agnaceae + Rhamnaceae. These results agree with other recent
studies (e.g., Sytsma et al., 2002; H. Wang et al., 2009).

Relationships in Fagales also agree with broad (Soltis et al.,
2000, 2007) as well as focused analyses (Manos and Steele,
1997; Li et al., 2002). Nothofagaceae and Fagaceae are succes-
sive sisters to the remaining Fagales, which form two clades: (1)
Casuarinaceae + Betulaceae and (2) Myricaceae + Juglandaceae
(Ticodendraceae and Rhoipteleaceae were not sampled here).

Our results for Cucurbitales are similar to recent analyses
(with Corynocarpaceae and Tetrameleaceae not sampled here)
(e.g., Zhang et al., 2006; Soltis et al., 2007). Anisophyllaceae
and Coriariaceae are subsequent sisters to a clade (BS = 78%)
of (Datiscacaee + Begoniaceae) + Cucurbitaceae.

In Fabales, Polygalaceae + Quillajaceae (BS support < 50%)
are sister to a clade (BS = 62%) of Surianaceae + Fabaceae. The
topologies for Fabales in recent analyses have varied greatly,
but most of these studies have involved only a few DNA re-
gions (see Wojciechowski et al., 2004, Banks et al., 2008;
Bruneau et al., 2008; Bello et al., 2009).
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COM clade—In Celastrales, Lepidobotryaceae are sister to a
broadly defined Celastraceae, following other recent focused
analyses (Simmons et al., 2001a, b; Zhang and Simmons, 2006).
Within Oxalidales, Huaceae are sister to the remainder of the
clade, which then forms two well-supported (BS = 100%) sub-
clades: (1) Connaraceae + Oxalidaceae, and (2) Brunelliaceae,
Cephalotaceae, Cunoniaceae, and Elacocarpaceae. Within the
second clade, Brunelliaceae are sister to Elaeocarpaceae +
(Cephalotaceae + Cunoniaceae). These relationships differ only
slightly from previous analyses. In Zhang and Simmons (2006),
results were well supported and identical to those here, but Ce-
phalotaceae were not sampled. In Wurdack and Davis (2009) a
weakly supported (BS = 59%) Cephalotaceae + Cunoniaceae
were unresolved with Brunelliaceae and Elacocarpaceae. In H.
Wang et al. (2009), Cunoniaceae were sister to (Cephalotaceae +
Elaeocarpaceae), albeit without BS support > 50%; the cur-
rent study also has increased representation of families within
Oxalidales over the H. Wang et al. (2009) analysis of Rosidae.

Malpighiales are well represented in the current study, and
relationships largely agree with recent analyses (e.g., Davis and
Wurdack, 2004; Davis et al., 2001, 2005; Wurdack and Davis,
2009; Ruhfel et al., 2011). The strong agreement between our
results and those of Wurdack and Davis (2009) is not surprising
given that both studies share considerable data. We overview
the major features of this clade below.

We recovered a well-supported (BS = 99%) parietal-placen-
tation clade (sensu Wurdack and Davis, 2009). Within this
clade, Lacistemataceae are the well-supported sister to Salica-
caeae, and Goupiaceae are weakly supported (BS = 68%) as
sister to Violaceae. The placement of Goupiaceae was unre-
solved in Wurdack and Davis (2009). The clusioid clade sensu
Wurdack and Davis (2009) was well supported (BS = 100%),
and within this clade Calophyllaceae were sister (BS = 74%) to
Podostemaceae + Hypericaceae. These relationships are also in
agreement with Ruhfel et al. (2011). Balanopaceae are sister to
a clade of Trigoniaceae + Dichapetalaceae, all of which is sister
to Chrysobalanaceae + Euphroniaceae. Other well-supported
(BS = 100%) sister-group relationships recovered here include:
Erythroxylaceae + Rhizophoraceae, Elatinaceae + Malpighi-
aceae, Lophopyxidaceae + Putranjivaceae, and Phyllanthaceae +
Picrodendraceae. The recently recognized (Wurdack and Davis,
2009) Euphorbiaceae segregate Peraceae are recovered here as
sister to Euphorbiaceae s.s. APG III (2009) has deferred recog-
nition of Peraceae pending additional support from other non-
mtDNA gene regions for placement of Rafflesiaceae within
Euphorbiaceae + Peraceae. Similar to recent findings (i.e., Davis
et al., 2007; Wurdack and Davis, 2009), our preliminary 17-
gene analyses that sampled Rafflesiaceae (later excluded with
most other parasites in our final analyses, but available upon
request) placed that holoparasitic lineage with this clade. De-
spite some advances in our understanding of Malpighiales here,
relationships of many constituent clades still remain unclear
(see Wurdack and Davis, 2009).

Superasteridae—Superasteridae (BS = 87%) consists of
Berberidopsidales, Santalales, Caryophyllales, Asteridae, and
possibly Dilleniaceae (see below). The 17-gene analysis placed
Santalales as sister to a weakly supported (BS < 50%) clade
of (Berberidopsidales + Caryophyllales) + Asteridae. The
sister grouping of Berberidopsidales + Caryophyllales received
BS =75%.

Complete plastid genome data (Moore et al., 2010) and IR
sequence data (Moore et al., in press) similarly recovered a
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well-supported Superasteridae clade; hence, we formally name
this clade here (see Appendix 2). However, these three analyses
differ in the relationships suggested among members of Super-
asteridae. Complete plastid genome sequence data place Santa-
lales as sister to the remainder (BS = 100%); Berberidopsis is
then sister to a clade (BS = 88%) of Caryophyllales + Asteri-
dae. IR data suggest Santalales as sister to the well-supported
(BS =98%) remaining taxa, in which Caryophyllales are sister
to a clade (BS = 68%) of Berberidopsidales + Asteridae. Hence,
all three studies agree in the placement of Santalales as sister to
the rest, but the precise placement of the enigmatic Berberidop-
sidales within Superasteridae remains unclear.

Dilleniales—Dilleniaceae were recovered as sister to the re-
maining Superasteridae (BS = 97%). This position is much bet-
ter supported than other recent placements of this enigmatic
family (e.g., Moore et al., 2010, in press), but despite this high
support, we remain cautious about its true placement because of
differing placements in recent studies. Using complete plastid
genome sequence data, Moore et al. (2010) placed Dilleniaceae
as sister to Superrosidae (BS = 64%), but topology tests did not
reject alternative positions of Dilleniaceae as sister to Asteridae
or to all remaining Pentapetalae. Analysis of IR sequences for
244 taxa placed Dilleniaceae sister to Superrosidae + Superas-
teridae (BS = 79%) (Moore et al., in press). Because of these
varied placements, Dilleniaceae are only tentatively placed here
in Superasteridae based on their position in Fig. 1. Additional
research is required to place Dilleniaceae definitively.

Santalales—Within Santalales (BS = 100%), the two sampled
genera of “Olacaceae”, a family now regarded as nonmonophyl-
etic (see Malécot and Nickrent, 2008; Nickrent et al., 2010), are
subsequent sisters to the well-supported (BS = 100%) remainder
of the clade. Santalaceae and Opiliaceae are successive sisters to
a clade (BS =79%) of Schoepfiaceae + Loranthaceae. Represen-
tation of Santalales is sparse, notably missing Erythropalaceae,
which may be sister to the rest of Santalales, and the holoparasitic
Balanophoraceae, which have recently been recognized as part of
this clade. Relationships among major clades of Santalales have
not been resolved with strong BS support in recent analyses,
and many segregate families have been newly recognized (e.g.,
Malécot, 2002; Nickrent et al., 2010).

Caryophyllales—The topology resolved here is similar to
that of Brockington et al. (2009). Two major subclades were
recovered: core Caryophyllales (Caryophyllineae) and noncore
Caryophyllales (Polygonineae) (clade names of Judd et al.,
2008). Polygonineae in turn comprise two clades: (1) Plumbag-
inaceae + Polygonaceae and Tamaricaceae + Frankeniacae, and
(2) Droseraceae + Nepenthaceae sister to Drosophyllaceae +
(Ancistrocladaceae + Dioncophyllaceae).

Within Caryophyllineae, Rhabdodendraceae, Simmondsi-
aceae, and Asteropeiaceae + Physenaceae are subsequent sis-
ters to the rest of the clade. Within the latter, Caryophyllaceae +
(Amaranthaceae + Achatocarpaceae) are sister to the remain-
der. In the remaining clade, Stegnospermataceae followed by
Limeaceae are sister to (1) Barbeuiaceae, Aizoaceae, and
Gisekiaceae as subsequent sisters to a clade of Phytolaccaceae
followed by Sarcobataceae as sisters to Petiveriaceae (as repre-
sented by Rivinia) + Nyctaginaceae; and (2) Molluginaceae fol-
lowed by Montiaceae sister to two clades: Halophytaceae sister
to Basellaceae + Didiereaceae, and Talinaceae sister to Portu-
lacaceae + Cactaceae. Portulacaceae and Phytolaccaceae, as
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broadly circumscribed, are not monophyletic in our analyses, in
agreement with previous studies (e.g., Applequist and Wallace,
2001; Cuénoud et al., 2002; Brockington et al., 2009; Nyffeler
and Eggli, 2010), leading to the inclusion of Calyptrotheca in
Didiereaceae and recognition of Montiaceae and Talinaceae (as
in APG III, 2009; Nyffeler and Eggli, 2010) and of Petiveri-
aceae (see Judd et al., 2008; Nyffeler and Eggli, 2010).

Asteridae—Within Asteridae, Cornales are sister to the re-
maining taxa (BS = 97%) within which Ericales are sister to a
clade (BS = 100%) consisting of two subclades: Lamiidae
(BS = 100%) + Campanulidae (BS = 100%). Recognition of
Asteridae comprising these four groups was first based on a
molecular phylogenetic analysis (Olmstead et al., 1992), and
the relationships among these groups are congruent with most
prior molecular studies (Olmstead et al., 2000; Albach et al.,
2001; Bremer et al., 2002), although with stronger support.

Cornales—Within Cornales (BS = 100%), a weakly sup-
ported clade (BS = 76%) of Cornus + Nyssa (Cornaceae s.1.) is
sister to a weakly supported (BS = 54%) clade of Curtisiaceae +
(Hydrangeaceae + Loasaceae). Only the sister pair of Hy-
drangeaceae + Loasaceae is well supported (BS = 100%), in
agreement with other analyses (Fan and Xiang, 2003). Two
families, Grubbiaceae and Hydrostachyaceae, were not in-
cluded here; the precise placement of the latter family within
Cornales has been particularly problematic (Olmstead et al.,
2000; Albach et al., 2001; Fan and Xiang, 2003).

Ericales—The monophyly of Ericales is well supported (BS
= 100%), but as in other recent studies, resolution within the
clade is more problematic. Our study retrieves a well-supported
clade (BS = 100%) of Tetrameristaceae + (Marcgraviaceae +
Balsaminaceae) (see Schonenberger et al., 2010) as sister to the
remaining Ericales, which are also well supported as monophyl-
etic (BS = 95%), but within which relationships are even more
uncertain, mirroring earlier analyses by Schonenberger et al.
(2005) based on 11 genes. Lecythidaceae are strongly supported
(BS =95%) as sister to the remainder, although in the 11-gene
study with much greater taxon sampling (Schonenberger et al.,
2005), Lecythidaceae were placed in a polytomy at this node.
Three other well-supported clades were recovered: (1) Po-
lemoniaceae + Fouquieriaceae (BS = 92%), (2) a clade (BS =
98%) of Actinidiaceae + Sarraceniaceae sister to a clade (BS =
100%) of Clethraceae + (Cyrillaceae + Ericaceae) (BS = 100%),
and (3) a Primulaceae s.1. clade (BS = 100%) in which Maesa is
sister to Clavija + Primulaceae s.s. (BS = 100%). As in the 11-
gene analysis (Schonenberger et al., 2005), the relationships of
Diapensiaceae, Ebenaceae, Sapotaceae, Ternstroemiaceae, and
Theaceae are not well supported here. A recent 23-gene analysis
with approximately 90 taxa of Ericales resolves many of these
latter placements (K. Sytsma et al., unpublished manuscript).

Lamiidae—Lamiidae are well supported (BS = 100%).
Within this clade, Icacinaceae + Garryales, and Vahliaceae are
subsequent sisters to the remaining lamiids, which comprise
four major clades: Boraginaceae, Lamiales, Solanales, and
Gentianales, among which there is no well-supported resolu-
tion. The position of Vahliaceae as immediate sister to the rest
of Lamiidae is consistent with the parsimony analysis of N. F.
Refulio-Rodriguez and R. G. Olmstead (unpublished manu-
script); however, in their ML and Bayesian analyses, Vahlia is
sister to Solanales.
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A more thorough analysis of the clade is provided by N. F.
Refulio-Rodriguez and R. G. Olmstead (unpublished manu-
script) with a total of 129 species of Lamiidae, including all
recognized families (APG III, 2009). Their results differ mostly
in places where resolution is weak in the results presented here,
such as the branching order among the early-diverging groups,
Oncothecaceae, Icacinaceae, and Garryales, and among the
four major clades of Lamiidae, Lamiales, Solanales, Genti-
anales, and Boraginaceae.

Lamiales—Lamiales (BS = 100%) comprise Plocospermata-
ceae, Oleaceae, and Tetrachondraceae as well-supported subse-
quent sisters (each with BS = 100%) to the rest of Lamiales.
Peltanthera (unassigned to family) plus (Gesneriaceae + Cal-
ceolariaceae) form a clade (BS = 97%) sister to the remaining
Lamiales, which form a strongly supported core (BS = 100%).
Within this core, few relationships have BS values >50% in our
analyses, indicating the difficulties in resolving relationships in
this clade. Relationships with support >70% include Verben-
aceae + Thomandersiaceae (BS = 75%), and (((Phrymaceae +
Orobanchaceae (BS = 95%)) + Paulowniaceae (BS = 99%)) +
Lamiaceae (BS = 74%)). These results are consistent with those
obtained by Refulio-Rodriguez and Olmstead (unpublished
manuscript), except that Orobanchaceae and Paulownia are
well-supported sister groups, followed by Phrymaceae in their
results. However, most of these families are represented here by
only a single species.

Solanales—The topology for Solanales agrees with other re-
cent analyses, although most have not had complete family
coverage of the order (e.g., Soltis et al., 2000). Complete family
coverage was obtained in Bremer et al. (2002), although the
current study provides much stronger internal support because
of the large number of genes included and added sampling
within Solanaceae and Convolvulaceae. We found Montini-
aceae are sister to Spenocleaceae + Hydroleaceae; this well-
supported clade (BS = 98%) is in turn sister to Convolvulaceae +
Solanaceae (BS = 100%).

Gentianales—Rubiaceae are sister to the remainder of the
clade, in agreement with other studies (e.g., Backlund et al.,
2000; Frasier, 2009). Relationships among the remaining fami-
lies have been unclear in most previous studies (e.g., Olmstead
et al., 2000; Soltis et al., 2000; Bremer et al., 2002), but here
Loganiaceae are weakly supported as sister to Gelsemiaceae +
(Apocynaceae + Gentianaceae), which is congruent with a
study of four plastid DNA regions (Frasier, 2009). Although the
current study does reveal areas of strong support, sampling in
the families of this order is low.

Campanulidae—A Campanulidae clade was recovered with
strong support (BS = 100%), and relationships within largely
agree with recent analyses, especially Tank and Donoghue (2010;
also see Lundberg, 2001; Winkworth et al., 2008). This is not
surprising given the very large overlap in data between the cur-
rent study and that of Tank and Donoghue (2010), the major dif-
ference being the addition of mtDNA and nuclear rDNA data in
the current study. Tank and Donoghue (2010) used their phylo-
genetic results to discuss floral evolution in Campanulidae, and
analyses of biogeographic patterns, especially in relation to past
continental connections, are underway.

Each of the four major lineages of Campanulidae—Apiales,
Aquifoliales, Asterales, and Dipsacales—was recovered here
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with strong support (BS = 100%). The several smaller Cam-
panulidae clades, including Escalloniales (= Escalloniaceae
sensu Tank and Donoghue, 2010) and Paracryphiales (=
Paracryphiaceae sensu Tank and Donoghue, 2010), also receive
strong support in the current study (BS = 91% and 99%, respec-
tively). Although recovered in the best ML tree (Figs. 1 and 2),
bootstrap support for Bruniales (the Columelliaceae-Bruniaceae
clade sensu Tank and Donoghue, 2010) is <50% in the total evi-
dence analysis reported here.

Relationships among the primary Campanulidae clades also
agree with previous analyses. We recovered the sister-group rela-
tionship of Aquifoliales and Apiidae (i.e., the remaining Cam-
panulidae taxa; Cantino et al., 2007). Likewise, relationships
among the six major lineages within Apiidae—Apiales, Aster-
ales, Bruniales, Dipsacales, Escalloniaceae, and Paracryphi-
aceae—were identical to earlier results (e.g., Zhang et al., 2003;
Winkworth et al., 2008; Tank and Donoghue, 2010). To facilitate
the study of evolutionary patterns within Apiidae, Tank and
Donoghue (2010) named several clades that they recovered with
strong statistical support, including Dipsapiidae (the Apiales-
Dipsacales-Paracryphiaceae clade) and Dipsidae (the Dipsacales-
Paracryphiaceae clade). Both of these clades were recovered in
the total evidence analysis, albeit with <50% bootstrap support.

Agquifoliales—Aquifoliales were resolved as the sister group
to Apiidae. Within Aquifoliales, there are two major lineages:
Cardiopteridaceae + Stemonuraceae and a clade of Aquifoli-
aceae + (Phyllonomaceae + Helwingiaceae). As did Tank and
Donoghue (2010), we found strong support for Phyllonoma-
Helwingia as sister to Ilex (Fig. 2). Although Phyllonoma and
Helwingia share several conspicuous morphological apomor-
phies, including epiphyllous inflorescences, most earlier studies
(based on far less data) placed Helwingia directly with Ilex to
the exclusion of Phyllonoma (e.g., Morgan and Soltis, 1993;
Soltis and Soltis, 1997; Olmstead et al., 2000).

Escalloniaceae—Escalloniaceae (= Escalloniales sensu APG
111, 2009) were recovered with strong support (Figs. 1 and 2; BS =
91%); however, their relationship to the other lineages of Cam-
panulidae remain uncertain. In addition, relationships among the
genera are not well supported aside from a core Escalloniaceae
clade composed of Escallonia, Forgesia, and Valdivia (Fig. 2).
In our mtDNA analyses, which included Escallonia, Eremosyne,
and Polyosma, none of the genes recovered a monophyletic Es-
calloniaceae. However, there is little support for relationships
among any of the unresolved lineages in the mtDNA analyses
(Appendix S6), with one exception: when mtDNA data are in-
cluded for Polyosma, it is placed with strong support within
Paracryphiaceae (= Paracryphiales sensu APG III, 2009). With-
out the mtDNA data, Polyosma is placed with BS = 91% in Es-
calloniaceae, as expected based on previous analyses (e.g.,
Lundberg, 2001; Winkworth et al., 2008; Tank and Donoghue,
2010) (compare Fig. 2 and Appendix S3; see below, Comparison
of mtDNA, rDNA, and plastid topologies).

Asterales—Each of the major lineages of Asterales was re-
covered with strong support, and, for the most part, relation-
ships among them are also well supported (Fig. 2). One
exception is at the base of the Asterales, where the successive
sister-group relationship of Pentaphragmataceae and the Rous-
saceae + Campanulaceae clade to the remainder of Asterales
received <50% bootstrap support (Fig. 2). In earlier studies, these
relationships were reversed, with the Roussaceae-Campanulaceae
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clade sister to the rest of Asterales (Lundberg and Bremer,
2003; Winkworth et al., 2008; Tank and Donoghue, 2010). In
our analyses of the plastid partition alone, we recovered the
same relationships as the earlier studies with strong support
(Appendix S5). By contrast, the mtDNA partition provides strong
support for the alternative resolution of these relationships (Ap-
pendix S6). When the mtDNA gene trees are examined sepa-
rately, atpl and matR recovered the mtDNA topology (BS < 50%),
while rps3 resolved the plastid topology (BS values < 50%) (Ap-
pendices S17-S20).

Bruniales—As noted above, Bruniales were recovered with
strong support by Tank and Donoghue (2010), but were only
weakly supported (<50% bootstrap) in our combined analysis.
This case is discussed further below (see Comparison of mtDNA,
rDNA, and plastid topologies). This clade is of biogeographic
interest in that Columelliaceae are restricted to South America,
while Bruniaceae are a primarily South African lineage; this
appears to be an ancient vicariance event in Campanulidae, and
the detailed historical biogeography of this clade is the subject
of current research.

Dipsapiidae—Tank and Donoghue (2010) named this clade to
emphasize the close relationship between Apiales and Dipsacales
(along with Paracryphiaceae, = Paracryphiales sensu APG III)—
aresult that appeared in several earlier studies (e.g., Bremer et al.,
2002; Winkworth et al., 2008) and is strongly supported in their
plastid analyses (Tank and Donoghue, 2010). Surprisingly, this
clade is not recovered with >50% bootstrap support in our total
evidence analyses, although it does appear in the ML BS tree
(Figs. 1 and 2). Within Dipsapiidae, Paracryphiaceae are resolved
as sister to Dipsacales (= Dipsidae sensu Tank and Donoghue,
2010), albeit with <50% bootstrap support. As with Dipsapiidae,
Dipsidae were strongly supported in the analyses of both
Winkworth et al. (2008) and Tank and Donoghue (2010).

Relationships within Dipsacales largely agree with earlier
studies (e.g., Bell et al., 2001; Donoghue et al., 2001, 2003;
Bell, 2004; Winkworth et al., 2008; Tank and Donoghue, 2010),
as do relationships within Apiales (e.g., Karehed, 2001, 2003;
Chandler and Plunkett, 2004; Winkworth et al., 2008; Tank and
Donoghue, 2010), with only minor differences in areas with
little to no bootstrap support (e.g., within Araliaceae).

Possible taxon sampling issues—Several relationships do not
agree with more detailed phylogenetic studies focused on partic-
ular clades (see also Tank and Donoghue, 2010). For example,
within Dipsacaceae (Dipsacales), Pterocephalodes is sister to
Dipsacus, and Scabiosa is their subsequent sister. The sister
group of Pterocephalodes and Dipsacus was very strongly sup-
ported in the analyses of Tank and Donoghue (2010), but is less
strongly supported here (BS = 54%). This result is incongruent
with the much more densely sampled analyses of Carlson et al.
(2009), where Pterocephalodes emerged as sister to all other
Dipsacaceae. In contrast, while Tank and Donoghue (2010)
found a well-supported sister-group relationship between Echin-
ops and Gerbera within Asteraceae, here we recovered the suc-
cessive sister-group relationship of Gerbera and Echinops to the
remainder of Asteraceae that appears in more detailed studies of
Asteraceae (e.g., Panero and Funk, 2008). In general, these ex-
amples highlight that although statistical support may be high for
particular relationships, taxon and gene sampling can both have
major effects on the outcome, especially when the diversity of
the group in question has been grossly undersampled.

[Vol. 98

Comparison of mtDNA, rDNA, and plastid topologies—In
the present study, there is some conflict among trees derived
from mtDNA, rDNA, and plastid data. However, resolution and
support of the rDNA topology is so low that there are no in-
stances of mutual incongruence with BS greater than 75% in-
volving it and either of the other partitions.

One major case of incongruence involves relationships among
major lineages of Rosidae. The analysis of mitochondrial genes
shows that the weakly supported COM clade is sister to the
strongly supported core members of Malvidae (Sapindales, Mal-
vales, Brassicales, Huerteales, Picramniaceae) with 92% BS sup-
port. This result parallels results obtained in a recent mtDNA
analysis of angiosperms (Qiu et al., 2010). An earlier analysis of
matR also recovered the same relationship, albeit with lower boot-
strap support (Zhu et al., 2007). In all previous large-scale analy-
ses of angiosperms or eudicots, the COM clade is sister to the
nitrogen-fixing clade (Chase et al., 1993; Savolainen et al., 2000a,
b; Soltis et al., 2000; Hilu et al., 2003; Burleigh et al., 2009), oc-
casionally with high support (e.g., BS = 89% in Burleigh et al.,
2009). These analyses were based either entirely on plastid genes
alone or in combination with nuclear rDNA (18S and 26S rDNA).
Thus far, only one large-scale analysis of angiosperms has been
performed on nuclear gene data, 18S rDNA (Soltis et al., 1997). In
that study, clades corresponding to Fabidae and Malvidae were
not recovered, but this has been a general problem with 18S and
26S rDNA data—Iimited resolution and low support due to low
phylogenetic signal (see Soltis et al., 1997).

One line of evidence that lends some support to the possible
sister relationship between the COM clade and Malvidae sug-
gested by mtDNA data comes from a broad survey of floral
structural characters (Endress and Matthews, 2006). Twenty-
two COM families and 18 families of Malvidae share a type
of ovule with a thicker inner integument than the outer one, a
situation that is otherwise very rare in eudicots (with only one
other occurrence, in Trochodendrales). That survey did not find
any morphological synapomorphy supporting the monophyly of
Fabidae, but this is not surprising in that morphological synapo-
morphies remain elusive for many major clades of angiosperms.

Likewise, within Campanulidae there are several instances
where mtDNA and plastid analyses are in conflict. The most
obvious example of conflict among data sets involved the place-
ment of Polyosma. With mtDNA sequence data included, Poly-
osma (Escalloniaceae) is placed sister to Quintinia in the
Paracryphiales (Appendix S2), but when mtDNA data for Poly-
osma are removed, it is placed in Escalloniaceae. Both alterna-
tive placements received high BS support, and nuclear -DNA
data do not provide sufficient resolution of the placement of this
taxon. These results suggest either a biological phenomenon
(e.g., HGT of mtDNA from some member of Paracryphiaceae
to the Polyosma lineage) or human error (e.g., incorrect label-
ing of material). All of the plastid sequences for Polyosma came
from two accessions—one used in Bremer et al. (2002) and one
a silica-gel collection obtained from MO (Tank and Donoghue,
2010). The individual plastid gene trees all agree with the place-
ment of Polyosma in Escalloniaceae. The afpl sequence for
Polyosma was obtained from our MO accession, while the other
three mtDNA genes came from a separate accession (Kew
M285-TL265). Because sequences from the MO accession used
by Tank and Donoghue (2010) in their plastid analyses agree
with previous studies based on a different accession (e.g.,
Bremer et al., 2002), it is possible that the M285-TL265 acces-
sion was misidentified, or tissue or tubes were mislabeled.
Significantly, sequencing of the mitochondrial genes surveyed
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here in a second accession of Polyosma, as well as a second
sample of Quintinia (the sister of Polyosma when mtDNA are
included), yielded nearly identical sequences and the same to-
pologies. Thus, available data favor HGT as the more likely
cause of incongruence involving Polyosma.

Further evidence of conflict between the mtDNA and plastid
partitions in Campanulidae comes from the lack of bootstrap
support in the combined analyses for several clades that were
well supported in our analyses of the plastid data alone. In anal-
yses of the plastid partition (Appendix S5), we recovered a
Bruniales clade with 79% BS support, in agreement with Tank
and Donoghue (2010). However, as noted above, in the com-
bined analysis this relationship received <50% bootstrap sup-
port. These results suggest that there is enough conflict between
the mtDNA partition and the plastid partition to collapse this
relationship. We observed several other such cases, including
the Dipsapiidae and Dipsidae clades and relationships at the
base of Asterales, as noted above.

Impact of taxon density—One concern with the complete
plastid genome analysis of angiosperms by Moore et al. (2010)
is that only 86 taxa were employed, raising questions regarding
the impact of taxon density on the topology. To test this, we
trimmed the 17-gene data set from 640 taxa to the 86 taxa in the
analysis by Moore et al. (2010).

The topologies of the 17-gene 640-taxon and reduced 86-
taxon (Appendix S21) data sets are very similar, but with a few
differences. Topological similarities include strong support for:
Chloranthaceae + Magnoliidae (BS = 94%); Monocotyledon-
eae + (Ceratophyllaceae + Eudicotyledoneae) (BS = 97%); and
Trochodendron followed by Buxus as subsequent sisters to
Gunneridae (BS = 100%; 95%). However, there are notewor-
thy differences between the trees. First, in the reduced tree,
Amborella is sister to Nymphaeales (BS = 97%), rather than
Amborella followed by Nymphaeales as sister to all other ex-
tant angiosperms. Second, Nelumbonaceae and Meliosma are
subsequent sisters to other angiosperms in the reduced tree,
rather than a clade, as in the larger tree. Third, Superrosidae are
not recovered in the reduced tree; instead, a modified Superas-
teridae (BS = 50%) includes Vitaceae (a member of Superrosi-
dae in the complete analysis). Fourth, Dilleniaceae are sister to
Caryophyllales (BS < 50%), rather than sister to all Superas-
teridae. This placement of Dilleniaceae as sister to Caryophyl-
lales was also seen in the three-gene tree (e.g., Soltis et al.,
2000), but not in the larger tree here. All of these placements
not only differ from the 17-gene, 640-taxon analysis, but also
from the complete plastid genome topology and from an analy-
sis of the IR for 244 taxa (Moore et al., in press). These results
further confirm that reduced taxon density can have a major
impact on topology, even when numerous genes are employed.
Furthermore, some of these differences could also reflect con-
flict between plastid and mtDNA data.
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Superrosidae W. S. Judd, D. E. Soltis, and P. S. Soltis

Definition

The most inclusive crown clade that contains Rosa cinnamomea L. 1753
(Rosidae) but not Aster amellus L. 1753 (Asteridae). This is a branch-
modified node-based definition. Abbreviated definition: >V Rosa
cinnamomea L. 1753 ~ Aster amellus L. 1753.

Etymology

From the Latin super (above, over, or on top) and Rosidae, a converted clade
name based on Rosa, the Latin name for rose (and probably originally
from the Greek, rhodon), in reference to the fact that the Superrosidae is
intended to apply to a crown clade “above Rosidae.”

Reference phylogeny

The primary reference phylogeny is this paper, see Figs. 1 and 2; see also H.
Wang et al. (2009) and Moore et al. (2010). Rosa cinnamomea is used as
a specifier because it is the type species of Rosaceae (and thus Rosidae,
under ICBN, which forms part of this clade name); its close relationship to
the species of Rosaceae included in the primary reference phylogeny (i.e.,
Spiraea betulifolia, S. vanhouttei, and Prunus persica) is supported by the
analyses of Evans et al. (2000) and Potter et al. (2002, 2007), in which
Rosaceae are shown to be monophyletic. Similarly, Aster amellus is used as
a specifier because it is the type species of Asteraceae (and thus Asteridae,
under ICBN); its close relationships to the species of Asteraceae included
in the primary reference phylogeny (i.e., Barnadesia arborea, Gerbera
Jjamesonii, Echinops bannaticus, Tragopogon dubius, T. porrifolius,
Cichorium intybus, Lactuca sativa, Tagetes erecta, Guizotia abyssinica,
and Helianthus annuus) is supported by the series of phylogenetic studies
of Asteraceae presented in Funk et al. (2009).

Composition

Rosidae (incl. Vitaceae), Saxifragales, and possibly Dilleniaceae.
Diagnostic apomorphies

No non-DNA synapomorphies are known.

Synonyms

There are no synonymous scientific names but the informal name “super-
rosids” was used for this clade in Moore et al. (2010), while the name
“superrosids” is used in version 9 of Stevens (2001, onwards).

Comments

This is arecently discovered clade that is strongly supported by the extensive
molecular analyses reported in this study, although we note that this

clade was also well supported in both the 12-gene ML analysis of H.
Wang et al. (2009; fig. 1), a study that focused only on relationships
within the Rosidae and thus included many fewer sampled taxa,
especially among nonrosid taxa, and the 83-gene ML and MP analyses
of Moore et al. (2010; fig. 1), which also were based on a much smaller
array of sampled taxa. The clade Superrosidae was recovered (but
without strong support) in all most parsimonious trees in the three-
gene analyses of Soltis et al. (2000; see figs. 1(B), 5, and 6) and in
some of the most parsimonious trees resulting from the analysis of atpB
and rbcL sequences in Savolainen et al. (2000a). The clade received
weak support in the ML analyses of angiosperms based on five genes
(Burleigh et al., 2009, see fig. 3 and the “full tree” included with their
online supplemental information). Therefore, although the existence of
the Superrosidae was suspected, and this clade was informally named
in Moore et al. (2010), we have not previously provided a formal name
for this clade. Only with the present results in hand are we sufficiently
confident that Superrosidae represents a well-supported clade and thus
is in need of a formal scientific name.

There is some disagreement, however, among recent phylogenetic analyses
regarding the position of Dilleniaceae. In the 17-gene analysis (reported
here), Dilleniaceae (represented by Tetracera, Hibbertia, and Dillenia) are
strongly placed as sister to a clade comprising Santalales, Caryophyllales,
Berberidopsidales, and Asteridae, while in an analysis of complete plastid
genome sequence data (Moore et al., 2010) they are placed as sister to a
Saxifragales + Rosidae clade. Finally, in an analysis of inverted repeat
(IR) sequences (see Moore et al., 2010), Dilleniaceae are placed as the
sister group to a large clade comprising Rosidae, Saxifragales, Asteridae,
Berberidopsidales, Caryophyllales, and Santalales. The use of branch-
modified, node-based definitions for both Superrosidae and Superasteridae
accommodates placement of Dilleniaceae in either Superrosidae or
Superasteridae, or positioned as the sister taxon to a Superrosidae +
Superasteridae clade, within the Pentapetalae (which in turn is nested
within the Gunneridae).

The essential feature of our concept of Superrosidae is its inclusion of everything
that is more closely related to Rosidae (i.e., Fabidae, Malvidae, Vitaceae)
than to Asteridae (i.e., Lamiidae, Campanulidae, Ericales, Cornales). This
is the feature that we have tried to capture in our definition. Furthermore,
when this definition is used in conjunction with our reciprocal definition
of Superasteridae (see Appendix 2), it ensures that Superrosidae and
Superasteridae are always mutually exclusive, regardless of the placement
of Dilleniaceae.

APPENDIX 2. PhyloCode description of Superasteridae

Superasteridae W. S. Judd, D. E. Soltis, & P. S. Soltis

Definition

The most inclusive crown clade that contains Aster amellus L. 1753 (Asteridae)
but not Rosa cinnamomea L. 1753 (Rosidae). This is a branch-modified
node-based definition. Abbreviated definition: >V Aster amellus L. 1753
~ Rosa cinnamomea L. 1753.

Etymology

From the Latin super (above, over, or on top) and Asteridae, a converted clade
name based on Aster (derived from the Latin, aster, meaning star, so
called because of the form of the radiate floral heads of these plants), in
reference to the fact that Superasteridae is intended to refer to a crown
clade “above Asteridae.”

Reference phylogeny

The reference phylogeny is this paper; see Figs. 1 and 2. See also Burleigh
et al. (2009, including online supplemental files 6 and 7). Aster amellus

is used as a specifier because it is the type species of Asteraceae (and
thus Asteridae, under ICBN, which forms part of this clade name); its
close relationship to the species of Asteraceae included in the reference
phylogeny (i.e., Barnadesia arborea, Gerbera jamesonii, Echinops
bannaticus, Tragopogon dubius, T. porrifolius, Cichorium intybus,
Lactuca sativa, Tagetes erecta, Guizotia abyssinica, and Helianthus
annuus) is supported by the series of phylogenetic studies of Asteraceae
presented in Funk et al. (2009). Similarly, Rosa cinnamomea is used as
a specifier because it is the type species of Rosaceae (and thus Rosidae,
under ICBN). The close relationship of Rosa cinnamomea to the species
of Rosaceae included in the reference phylogeny (i.e., Spiraea betulifolia,
S. vanhouttei, and Prunus persica) is supported by the analyses of Evans
et al. (2000) and Potter et al. (2002, 2007), in which Rosaceae are shown
to be monophyletic.

Composition

Santalales, Berberidopsidales, Caryophyllales, Asteridae, and possibly
Dilleniaceae.
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Diagnostic apomorphies
No non-DNA synapomorphies are known.
Synonyms

There are no synonymous scientific names, but the informal names “super-
asterids” (Moore et al., 2010) and “superasterids” Stevens (2001, onward,
version 9) have been used for this clade.

Comments

This is a recently discovered clade that is strongly supported by the extensive
molecular analyses reported in this study, although we note that this
clade was also strongly supported in the 83-gene ML and MP analyses
of Moore et al. (2010; see fig. 1), which were based on a much smaller
array of sampled taxa. The Superasteridae received weak support in the
ML analyses of angiosperms based on five genes (Burleigh et al., 2009,
see fig. 3 and their “full tree” included with the online supplemental
information). Therefore, although the existence of the Superasteridae
was suspected, and this clade was informally named by Moore et al.
(2010), we have not previously provided a formal name for this clade.
Only with the present results in hand are we sufficiently confident that
Superasteridae represents a well-supported clade, and thus is in need of
a formal scientific name.

There is some disagreement among recent phylogenetic analyses regarding

the position of Dilleniaceae. In the 17-gene analysis (reported here)
Dilleniaceae (represented by Tetracera, Hibbertia, and Dillenia) are
strongly placed as sister to a clade comprising Santalales, Caryophyllales,
Berberidopsidales, and Asteridae, while in an analysis of complete plastid
genome sequence data (Moore et al., 2010 they are placed as sister to a
Saxifragales + Rosidae clade. Finally, in an analysis of IR sequences (see
Moore et al., unpublished) Dilleniaceae are placed as the sister group to a
large clade comprising Rosidae, Saxifragales, Asteridae, Berberidopsidales,
Caryophyllales, and Santalales. The use of branch-modified node-based
definitions for both Superasteridae and Superrosidae accommodates
placement of Dilleniaceae in either Superasteridae or Superrosidae, or
positioned as the sister taxon to a Superasteridae + Superrosidae clade,
within the Pentapetalae (which is in turn nested within the Gunneridae).

The essential feature of our concept of Superasteridae that we have tried to capture

in our definition is its inclusion of everything that is closer to Asteridae
(i.e., Lamiidae, Campanulidae, Ericales, Cornales) than to Rosidae (i.e.,
Fabidae, Malvidae, Vitaceae). Furthermore, when this definition is used in
conjunction with our reciprocal definition of Superrosidae (see Appendix
1), it ensures that Superasteridae and Superrosidae are always mutually
exclusive, regardless of the placement of Dilleniaceae.




