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Abstract.—The growth of phylogenetic trees in scope and in size is promising from the standpoint of understanding a
wide variety of evolutionary patterns and processes. With trees comprised of larger, older, and globally distributed clades,
it is likely that the lability of a binary character will differ significantly among lineages, which could lead to errors in
estimating transition rates and the associated inference of ancestral states. Here we develop and implement a new method
for identifying different rates of evolution in a binary character along different branches of a phylogeny. We illustrate this
approach by exploring the evolution of growth habit in Campanulidae, a flowering plant clade containing some 35,000
species. The distribution of woody versus herbaceous species calls into question the use of traditional models of binary
character evolution. The recognition and accommodation of changes in the rate of growth form evolution in different
lineages demonstrates, for the first time, a robust picture of growth form evolution across a very large, very old, and very
widespread flowering plant clade. [Binary character; Campanulidae; comparative methods; flowering plants; growth habit;
herbaceous; Hidden rates model; woody.]

With the availability of larger and larger phylogenetic
trees comes the promise of evaluating more complicated
models of evolution. Considerable attention has been
focused on continuously varying characters, and it is
now possible to apply complex, parameter-rich models
for detecting differences on different branches of the tree
in the processes associated with phenotypic evolution
under Brownian motion (O’Meara et al. 2006; Thomas
et al. 2006) or the Ornstein–Uhlenbeck process (Butler
and King 2004; Beaulieu et al. 2012a). In contrast,
discrete binary characters, which are often the focus of
evolutionary studies, have received little attention, and
we are continually forced to rely on relatively simple
models that apply the same rates of state change to all
branches in a tree (but see O’Meara 2007).

Simple models of binary character evolution may
make sense for small clades, but they are not likely
to adequately explain the evolution of such characters
in larger, older, and globally distributed clades. In
these instances one might expect the lability of a
trait—or the propensity to undergo state changes—to
differ significantly among clades. In flowering plants,
for example, some large and old clades contain only
woody species (e.g., Fagales, containing the oaks and
their relatives), others contain only herbaceous species
(e.g., Brassicaceae, the mustards), and still others show
tremendous variation in growth form, apparently with
multiple shifts between these growth forms (e.g.,
Asteraceae, the sunflower and relatives). Failure to
account for such differences in transition rates in
different portions of the tree could lead to errors in
estimating transition rates and the associated inference
of ancestral states. In view of the fact that we can now
infer extremely large phylogenetic trees (e.g., with over

55,000 tips; Smith et al. 2011) we should have the power
to fit models with more than a few parameters.

Here we develop and implement a new method
for identifying different rates of evolution in a binary
character along different branches of a phylogeny, and
we bring this to bear on the inference of ancestral states.
We illustrate this approach by exploring the evolution
of growth form in Campanulidae, an angiosperm clade
containing some 35,000 species, including the familiar
composites (sunflowers and relatives), umbels (carrots
and relatives), and Dipsacales (honeysuckles and
relatives). As we will show, the phylogenetic distribution
of woody versus herbaceous species calls into question
the use of traditional models of binary character
evolution, and the recognition and accommodation of
changes in the rate of growth form evolution in different
lineages casts a new light on the diversification of
campanulids.

METHODS AND DATA

A Hidden Rates Model
Here our primary interest is in understanding the

rates of evolution between two habit states—woody
(W) and herbaceous (H)—across a very large and
variable flowering plant clade. Typically, a likelihood-
based ancestral state reconstruction method would be
used, and we would fit a model that, at its most complex,
would assume only two transition rates governing the
probability of change between the two character states
(we will refer to this as the TH model, for “time-
homogeneous”). The likelihood of this model is defined
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as being proportional to the probability of the data given
a model of evolution:

L(Q)∝P(D|Q,T). (1)

In this case, the model, Q, defines a continuous-time
Markov process, and the data, D, are the observed
character states at the tips of a phylogeny T, whose
branch lengths and topology are known. For a binary
character, Q is a 2×2 transition matrix representing the
transition rates between the character states:

Q= W
H

[
− qW→H

qH→W −
]
. (2)

The entries in Q define the instantaneous transition from
W to H (qW→H), and from H to W (qH→W ). Implicit in this
model is that the transition rates for going between the W
and H states are applied to all branches in the phylogeny.
That is, if the W to H transition rate is “fast”, it will be
assumed to be “fast” throughout the entire phylogeny.
However, across a very large phylogeny one could easily
imagine scenarios wherein the transition rates between
the states could differ in different portions of the tree.
This is the issue that our hidden rates model (HRM) is
intended to address.

Phylogeneticists have long appreciated the need
to account for site-specific rate heterogeneity when
inferring phylogenies from molecular sequence data,
and have developed several methods to do so. For
example, Penny et al. (2001) and Galtier (2001) proposed
a form of the “covarion” (COncomitantly VARIable
codON) model of nucleotide substitution, originally
formulated by Fitch and Markowitz (1970), which
presupposes that one or more rate classes underlie each
state at a site in an alignment. In the covarion model
of Penny et al. (2001) there are two such rate classes: a
site can either be considered “on”, in which transitions
among nucleotide states occur freely, or “off”, where
all transition rates are zero. A more general form of
the covarion model, proposed by Galtier (2001), allows
for an arbitrary number of rate classes, each with its
own transition probabilities among nucleotide states. In
either case, the different rate classes represent potentially
different transition rates to and from observed states.
However, because only the states can be observed, the
states are treated as ambiguous observations of the
different rate classes. These models are more broadly
known as hidden Markov models (HMM) because rate
classes are treated as “hidden” states in the Markov
process.

Here we describe how a generalization of the covarion
model, which we refer to as the “hidden rates model”
(HRM), can be used to allow different rate classes
to be treated as “hidden” states in reconstructing
ancestral character states. For growth form, there may
be, for example, two-rate classes, fast (F) and slow (S),
underlying each observed state of W and H. In this case,
an observed character state, such as W, might be either
WF or WS. However, since we are only able to observe
the character states, we treat each observation as having

a probability of 1 for either being F or S. We can then
define a single model, Q, to account for the process of
transitioning between all character state and rate pairs:

Q=
WS
HS
WF
HF





− qWS→HS qWS→WF 0
qHS→WS − 0 qHS→HF
qWF→WS 0 − qWF→HF

0 qHF→HS qHS→WF −



. (3)

In this two-rate example, Q is a 4×4 transition matrix
with eight possible instantaneous transition rates. The
entries in Q describing dual transitions, involving
changes in both the state and rate (e.g., WF→HS) are
set to zero to force such transitions to either first pass
through the same state to a different rate (i.e., WF→
WS→HS), or to pass through a different state in the same
rate (i.e., WF→HF→HS). This simplifies the model
somewhat by reducing the number of parameters, but
it also ensures that the model does not misattribute dual
transitions when both state and rate change over longer
time periods (Pagel 1994).

Before moving forward, a remark about the biological
meaning of the HRM is warranted. In the example
above, it could be that HF and HS represent different
kinds of herbaceousness; perhaps the former retain
a cambial layer that could simply be activated to
produce secondary xylem (wood), whereas the latter
have completely lost a continuous cambial cylinder,
rendering it harder to evolve wood. However, slow
or fast could be due to some unmeasured additional
character(s). For example, HF could be perennial plants
whereas HS could be annual plants. As it is unlikely
for annuals to evolve wood, all transitions to woodiness
would come from HF plants. Note that if there is a
single unmeasured trait, such as annual or perennial,
the transition matrix in our HRM approach with two
hidden states per observed state is the same as the
transition matrix in a standard Pagel (1994) pair of
binary traits model. The heterogeneity in transition rates
is based on this unmeasured other character, but the
HRM should, in theory, be able to account for this. Of
course, environmental factors may also affect transition
rates. For example, it might be that an herbaceous
lineage could evolve woodiness only in the absence of
particular competitors. Co-occurrence with particular
competitors is not genetically heritable in the classic
sense, but descendant generations may nevertheless
share this “trait” with their ancestors. In this way, related
branches would tend to be similar in transition rate
between woody and herbaceous forms based on the
presence/absence of competitor. The HF combination
could thus correspond to branches that were herbaceous
and lacked competitors. There are likely to be many traits
or environmental factors that affect transition rates of
a focal character. The HRM simply allows the model
to effectively “paint” a phylogeny with areas where
transitions happen frequently or infrequently due to
unmeasured characters that affect the rates.

We also note that the model, Q, described in
equation (3), can easily be modified to allow an arbitrary
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number of hidden rate classes. Here we use the Akaike
Information Criterion (Akaike 1974) to compare the
log-likelihoods of different models. The log-likelihood
is equivalent to equation (1) and can be calculated
efficiently by making use of conditional likelihoods at
each internal node (Felsenstein 1981). The conditional
likelihood of an internal node, k, is the product of the
probability of observing all descendent character states
from its two descendants, node i and node j, given that
k is in character state, ck :

Lk(ck)=
(
∑

ci

Pckci (ti)Li(ci)

)


∑

cj

Pckcj (tj)Lj(cj)



. (4)

Under the continuous-time Markov model, the
probability of change from one character state to
another (e.g., the term Pckci (ti) for descendent i) over
a time interval, t, can be expressed as, P(t)=eQt, with
Q representing our model of evolution. Thus, the
conditional likelihood calculated at any given internal
node is carried out exactly as in the TH model. However,
in this case we begin at the tips by summing over the
probabilities that are compatible with our observed
character state: for example, the probability is set to
1 for both WS and WF given our observation of a tip
being woody. A nonlinear optimization routine is used
to find estimates for the entries in Q that maximizes
the conditional likelihood of the bottom-most internal
node, the root of the phylogeny.

For the remainder of the article we focus on evaluating
models that contain increasing numbers of hidden rate
classes to assess whether portions of a phylogeny where
character transitions happen frequently or infrequently
are biologically relevant. However, these represent a
subset of possible models. For a given rate class, we can
compute the number of distinct models using Stirling
numbers of the second kind (Abramowitz and Stegun
1972),

S
(
n,k

)
= 1

k!
k∑

i=0

(
−1
)k−i k!(

i−k
)
!i!
(
in
)

(5)

where n parameters are partitioned into all possible k
subsets. The sum of all possible subsets (i.e., 1,2,...,n
parameters), or the Bell number (see Pagel and Meade
2006), can be used to calculate the total number of
distinct model combinations contained within our HRM
framework. Such parameter subsets include, but are not
limited to, models where only hidden rate classes only
underlie one state as opposed to both (e.g., W, HS,
HF), models where particular transitions are set to zero
(e.g., WS↔HS=0), or various combinations of models
where transition rates vary among, but not within, each
rate class (e.g., WS↔HS '=WF↔HF). For an HRM that
contains two hidden rate classes, there are 4140 distinct
models that could be evaluated (i.e., the sum of eight
total parameters partitioned into all possible subsets of
1,2,...,8 parameters); for three hidden rate classes there
are 190,899,322 distinct models. The relative weight for

each of these models based on AIC can be taken as
informative about the evolutionary process, or the best
model alone can be selected. Here, we evaluate the fully
parameterized models for each rate class, rather than
the myriad subsets that set some parameters equal to
each other or to zero. For many problems, however, such
reduced models may have better fit than more complex
ones.

Finally, the observed information matrix (i.e., the
Hessian matrix) can be used to test for model non-
identifiability (Formann 1985). The square roots of the
diagonals of the inverted Hessian matrix approximate
the standard errors of the transition rates. It should
be noted, however, that this approach assumes that
each parameter estimate is asymptotically normally
distributed for the true value as the sample size
approaches infinity (Yang 2006). This will not always
be the case, especially when the parameter estimate lies
near a bound (e.g., qWF =0). Parametric bootstrapping
(simulation), which is slower but more accurate, may be
more appropriate in such conditions.

Implementation
All methods described above are implemented in

the new R package, corHMM (pronounced “kor-um”)
available through CRAN (http://cran.us.r-project.org).
Our package requires as input only the observed states at
the tips of a phylogeny with branch lengths. Models that
contain up to five hidden rate classes can be specified
and a bounded subplex routine (NLopt; Johnson 2012) is
used to maximize the log-likelihood function to find the
optimal parameter estimates for the entries in Q. The tree
does not have to be fully resolved, and polytomies are
allowed by generalizing equation (4) to include as many
terms (i.e., probabilities associated with descendant
node, i,j,...,n), as there are nodes descending from a
focal node.

The marginal reconstruction method of Yang et al.
(1995) and Koshi and Goldstein (1996) was implemented
to assign the probability of each ancestral state
and rate combination to an internal node given the
observed tip states and parameter estimates in Q.
Our implementation follows the dynamic programming
algorithm implemented in Mesquite (Maddison and
Maddison 2011) and diversitree (FitzJohn et al. 2009),
which starts by traversing the tree from the tips down
toward the root computing the conditional probability of
each character state for each internal node as described
above [equation (4)]. The algorithm then traverses the
tree from the root to each tip computing the probability
of each character state for the ancestor of a focal node
which is taken as the product of two quantities: 1) the
probability that the ancestor changed character states
along the length of its subtending branch and; 2) the
probability a state change occurred along the branch
leading from the ancestor to the sister of the focal
node. The marginal probability of a focal node is then
computed as the probability that a character change
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occurred along the branch separating the ancestor and
the focal node given the above probability for the
ancestor and the conditional probability of each state
for the focal node. The calculation at the root is similar
but involves weighting the conditional likelihood either
by weighting each possible character state equally, or
weighting by the probability that each character state
gave rise to the descendant character states given the
transition rates and the tree—a procedure described by
FitzJohn et al. (2009) [see equation (10)]. In the latter case,
this probability is calculated by dividing the likelihood
that the root is in character state i by the sum of the
likelihoods of all possible character states.

Simulations
We evaluated the performance of the HRM by

simulating data sets under two models that contain
a single hidden state. The first model assumed three
transition rates: two corresponding to separate rates for
transitions from state 0 to state 1, and from state 1 to
state 0, and one corresponding to transitions from state
1 to a different, hidden and absorbing state (i.e., an
evolutionary “dead-end”) underlying state 1. The second
model was similar to the first, but included an additional
rate for transitions to state 1 from the hidden state. The
purpose of evaluating these relatively simple models
under the HRM was to better understand the behavior
of the model and to determine the minimum conditions
necessary to adequately infer a hidden state when one
indeed exists.

A multiple regression framework was used to examine
how several aspects of tree shape and taxon sampling
might affect the fit and bias of the HRM. For each
model, we simulated 1000 data sets on random trees
of various sizes generated under a proportional-
to-distinguishable-arrangement model (PDA), and all
branch lengths were rescaled so that the total height
was 100. Under the PDA model all tree shapes are
equiprobable for a given tree size (Slowinski 1990), which
ensured that highly imbalanced trees would be obtained
at moderate frequency. The shape of each tree was
measured using Colless’ index (Ic) standardized by the Ic
of a completely pectinate tree (a comb) of the same size.
Colless’ index is the sum of the absolute values of the
difference between the numbers of taxa in every pair of
clades on the tree (Colless 1982). The size of a randomly
generated tree was determined by drawing a value from
a uniform distribution that ranged from 32 to 1000
possible taxa. The known parameters for the different
transition rates of the generating model were drawn from
a uniform distribution in the interval [0, 0.10]. We chose
this interval to ensure that, on average, there was>1 state
changes along each root to tip path. We also assessed
the overall character change inferred in each of these
data sets by calculating the average parsimony score per
edge as Pscore/(2n−2), with n being the number of taxa.
Although parsimony is biased toward underestimating
the amount of change, it is straightforward to calculate

and could serve as a fast indicator of whether there is
enough change to generate sufficient information to fit
our model. All simulations were carried out in corHMM.

Each simulated data set was evaluated under the
generating model, the alternative HRM, and the TH
model that assumes no hidden state. The AIC weight
(wi), which represents the relative likelihood that model
i is the best model given a set of models (Burnham
and Anderson 2002), was calculated for all models. A
generalized linear model (GLM) was used to test for an
association between the AIC weight of the true model
and tree size, tree shape, and the average number of
changes (under parsimony) per edge. Whether or not
the generating model had the highest AIC weight was
treated as a factor. A binary response required the use
of a binomial description of the error distribution in the
GLM, which is equivalent to fitting a logistic regression.
Finally, we tested for an association between the three
predictors and the bias in the parameter estimates of the
transitions to and from the hidden state.

Campanulid Phylogeny and Habit
Campanulidae contains four major lineages of

angiosperms—Aquifoliales (536 species), Asterales
(26,870 spp.), Apiales (5489 spp.), and Dipsacales (1090
spp.)—as well as a number of smaller clades (using the
APGIII (2009) for taxonomy): Bruniales (79 spp. from
both Bruniaceae and Columelliaceae), Escalloniaceae
s.l. (130 spp.), and Paracryphiaceae s.l. (130 spp.) (see
Tank and Donoghue 2010). In total, campanulids contain
nearly 35,000 species.

We constructed a large sequence-based tree for
campanulids using available data from GenBank for 12
gene regions: five coding regions of chloroplast DNA
(atpB, matK, ndhF, psbA, and rbcL) and six non-coding
regions (rpl16 and rps16 introns, and the intergenic
spacers atpB-rbcL, trnK, trnS-trnG, and trnL-F), as well
as the nuclear ribosomal internal transcribed spacer
region (ITS). These regions were chosen because they
are among the most commonly used gene regions
for molecular phylogenetic studies within campanulids
(see Beaulieu et al. 2012b). The chloroplast regions
are also relatively less complex with respect to gene
duplication and loss. Although ITS can be complicated
(see Alvarez and Wendel 2003), it was included here
because it is, by far, the best-sampled gene region
for campanulids within GenBank. The sequence data
set was constructed using the procedures described in
Smith et al. (2009) and implemented in the program
PHLAWD. It uses a “baited” sequence comparison
approach where a set of sequences provided by the user
is used to filter GenBank sequences and to determine
if sequences are homologous to the gene regions of
interest; sequences judged not to be homologous are
discarded. For homologous sequences, a saturation
analysis is conducted that compares the raw pair-wise
sequence distances and those corrected according to
a Jukes–Cantor model of molecular substitution. If an
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alignment appears to be saturated, the matrix is broken
up into less inclusive groups based on a user-defined
nested taxonomic hierarchy. Here, we used the NCBI
taxonomy as our guide for breaking up alignments into
smaller matrices. The individual subset alignments are
then aligned together using profile-to-profile alignment
techniques implemented in MUSCLE (Edgar 2004).

Our final combined sequence matrix of 12,094 sites for
8911 species contained 86.2% gaps or missing sequence
data. A maximum likelihood (ML) phylogenetic analysis
of the total sequence alignment was performed using
RAxML (v.7.2.6; Stamatakis 2006), and tree searches were
conducted under the GTR+CAT approximation of rate
heterogeneity, partitioned by gene region. A criterion
based on the Robinson–Fould (RF) distance was used
to assess asymptotic convergence of the log-likelihood
score over time; the ML search was terminated if the
relative RF distance between two consecutive inferred
trees was smaller than 1%. The phylogenetic analysis was
restarted 50 times to obtain a set of 50 candidate trees,
and for each we estimated branch lengths and identified
the tree with the highest likelihood under the GTR+!
model.

The resulting trees were rooted on the branch leading
to Aquifoliales based on the analysis of Tank and
Donoghue (2010), which found strong support for
Aquifoliales as sister to a clade containing the rest of
campanulids. We also note that the relationships among
the major campanulid lineages in our large sequence-
based tree are identical to those of the more focused
study of Tank and Donoghue (2010). Relationships
among less inclusive clades also mirrored the cumulative
results of hundreds of published studies focused on
included clades (Beaulieu et al. 2012b). Overall, our tree
provides a fairly complete synthesis of the knowledge of
relationships within campanulids.

The ML tree was converted to an ultrametric tree
using the non-parametric dating method implemented
in PATHd8 (Britton et al. 2007). The algorithm in
PATHd8 only considers the mean path lengths from
a node to its descendants and addresses deviations
from the molecular clock locally. We used as fixed
age constraints the absolute age estimates obtained
from a more focused Bayesian divergence time analysis
of 121 campanulid taxa (Beaulieu et al. 2013). In the
present analysis, campanulids are estimated to have
originated in the Albian (ca. 104 MA) and the primary
divergences along the backbone are estimated to have
occurred by the Cenomanian (ca. 93 MA). The primary
crown clades (i.e., Aquifoliales, Asterales, Apiales, and
Dipsacales) are all estimated to have existed by the end of
Campanian (∼80 MA). In general, these age estimates for
campanulids are older than the ages implied directly by
the fossil record (e.g., ∼83.5 MA for crown campanulids,
Martínez-Millán 2010), but younger than estimates from
previous molecular studies (e.g., ∼123 MA for crown
campanulids; Bremer et al. 2004).

We scored each of the 8911 species in our sequence-
based tree as being either (0) woody or (1) herbaceous.
Woody plants (trees or shrubs) produce secondary

xylem (true wood) following cell divisions in the
vascular cambium. In herbaceous plants the cambium
produces little or no secondary xylem tissue. There is
ambiguity in some cases. We scored plants that may
produce some secondary growth but that die back
to the ground each year as herbaceous. Our scoring
of habit was based on published accounts, including
original taxonomic descriptions and floras. The final tree
and character matrix can be downloaded from Dryad
(doi:10.5061/dryad.fn50c).

We fit four different models of habit evolution to
our campanulid data set. The simplest model assumed
separate rates for transitions from W to H, and from H
to W (the TH model). We also assessed the fit of HRM’s
that assumed two, three, and four hidden rate classes
underlying each of the observed W and H states. In each
of these models, we treated both W and H observations
as being ambiguous for the different hidden rate classes
specified in the model. It would be possible, however,
to assign some taxa to particular rate categories (e.g.,
set some species to be HS). In all cases, we performed
analyses with short branches collapsed in order to
minimize the impact of branch length and phylogenetic
uncertainty on the estimates of the transition rates. We
also checked for consistency in the fit and estimates of
transition rates among the individual ML trees, which
were similar from tree to tree. Therefore, for illustrative
purposes, we focus on results obtained from the ML
tree with the highest likelihood. For the model with the
best overall fit based on AIC, we used the estimated
parameters to calculate the marginal probabilities of
the most likely W and H state and rate at all internal
nodes in our dated ML tree. For general comparison,
and for our analyses of model adequacy, we also carried
out a parsimony analysis using the R package phangorn
(Schliep 2011).

Model Adequacy
Model adequacy is a different concern than model fit:

the latter determines which of a set of models is least bad
(or “best”) for the data, whereas the former determines
whether a single model adequately describes the data.
For example, a model that says humans, chimps, and
mice all diverged simultaneously 70 million years ago is
a better fit to the data than one that puts that divergence
700 million years ago, but neither model adequately
describes the data. Adequacy is often evaluated by
simulating under the focal model to see if it generates
data indistinguishable from the empirical data using one
or more measures.

We checked the adequacy of the HRM in describing
the observed growth form data in two ways. In the first
test, we examined the expected number of state changes
as inferred with parsimony under the HRM model. We
simulated 100 random data sets on our ML tree using the
parameter estimates from the HRM with three hidden
rate classes and for each data set recorded the parsimony
score. In the second test, we examined the expected
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TABLE 1. Multiple regression results for simulations that assessed
how the numbers of taxa, average parsimony score (Pscore) per edge,
and the shape of a tree predict the fit and bias of the HRM

Model: 0↔1→1∗ Slope P-value

Model fit
Number of taxa 0.001 0.037
Ave Pscore/edge 1.86 0.096
Tree shape −5.76 <0.001

Bias in parameter estimates
Number of taxa 0.000 0.083
Ave Pscore/edge −0.921 <0.001
Tree shape −0.047 0.707

Model: 0↔1↔1∗

Model fit
Number of taxa 0.001 0.002
Ave Pscore/edge 1.25 0.475
Tree shape −5.97 0.012

Bias in parameter estimates
Number of taxa <0.001 0.111
Ave Pscore/edge −0.203 <0.001
Tree shape 0.098 0.399

Note: The first HRM (i.e., 0↔1→1∗) assumed three transition rates:
two rates corresponding to and from state 0 to state 1, and one
corresponding to transitions from state 1 to a hidden state (i.e., 1∗).
The second HRM (i.e., 0↔1↔1∗) was similar to the first but included
an additional rate for transitions to state 1 from the hidden state. Bold
italics indicates P<0.05.

distribution of state changes under the model. For each
simulated data set, we counted the diversity contained
within subclades comprised of species with the same
character state, and using a Kolmogorov–Smirnov test,
where P>0.05 indicated a match, we compared the
distribution of simulated data sets from the HRM, and
those of the TH model, to the observed distribution.

RESULTS

Simulations
Several aspects of the underlying tree were significant

predictors of whether or not the generating model was
favored. A significant negative association with the
shape of the tree indicated that more balanced trees
were more likely to favor the generating model than
more imbalanced ones (Table 1). There was a significant
positive association with the number of taxa sampled
(Table 1), although there was a great range in the number
of taxa in trees that favored the generating model. At the
lower end of the range, there were trees with as few as
60 taxa that favored the generating model when there
was a single transition rate to the hidden state. When the
model assumed that there were transitions to and from
the hidden state, there were trees with as few as 120 taxa
that supported the generating model.

Although the average number of changes per edge
was not a significant predictor of model fit, it was
the only significant predictor of bias in the parameter
estimates associated with the hidden state. The negative
relationship between the number of character state
changes and the bias was particularly pronounced;

FIGURE 1. Plot of the log-likelihoods for the different models fit to
the growth habit data of Campanulidae (campanulids). The addition
of a single hidden rate (HRM+2) improved the likelihood by just over
400 log-units over a TH model. When three rate classes were allowed
(HRM+3), the likelihood was improved by another 100 log-units. With
four rate classes (HRM+4) the likelihood was improved by only an
additional seven log-units, and was a model that was too complex for
the information contained within the data.

across the range of observed average changes per branch,
the bias declined by more than half. However, a more
important question for many using these methods may
not be “what is the value of a particular transition rate”,
but rather, “are there differences in the direction of gains
and losses.” For the model that assumed transitions to
and from the hidden state, the transition rate randomly
chosen as the higher value was correctly inferred as
having a higher value in over 80% of the data sets. Taken
together, these results suggest that trees with many state
changes will tend to return reliable parameter estimates.
Meaningful differences in the parameter estimates can
also be detected, which includes estimates associated
with transitions to and from a hidden state.

The Evolution of Growth Habit
Comparing the fit of the time-homogeneous (TH)

model against the HRM with different numbers of
hidden rate classes it is clear that branch-specific rates
of evolution have been a major factor underlying growth
form evolution in campanulids (Fig. 1). The addition
of a single hidden category (i.e., allowing slower and
faster rate classes for both the woody and the herbaceous
state), and thus only six more parameters, improved the
likelihood by just over 400 log-units. When three rate
classes (i.e., slow, medium, and fast) were allowed, the
likelihood was improved by another 100 log-units. With
four rate classes the likelihood was improved by another
seven log-units, but contained several parameters that
were not identifiable, indicating that this model may be
too complex for the information contained within the
data. In any case, this model had a "AIC of 1.6 relative
to three rate classes, suggesting that this model does not
provide a substantial improvement over the model with
three hidden rate classes.
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The parameters estimated under the different models
showed very different patterns in the estimated
transition rates between woody (W) and herbaceous
(H) states. Under the TH model, transitions from H
to W (qH→W =0.0207; s.e.=±0.0011) were estimated
to be more than twice the rate for transitions going
from W to H (qW→H =0.0094; s.e.=±0.0013). The most
likely ancestral states under this model suggest that all
campanulid lineages were ancestrally woody and the
herbaceous habit evolved multiple times independently
within each of the major clades. In numerous instances,
herbaceous lineages are inferred to have re-evolved the
woody habit, but the vast majority of these transitions
are reconstructed to have taken place within Asteraceae.

The addition of a single rate category into the model
effectively creates a slower and a faster rate class for both
the woody state and the herbaceous state. The slower
rate class (S) followed the same general trend seen in the
TH model, with the rate from H to W(qHS→WS =0.0008;
s.e.=±0.0008) being higher than the rate from W to
H(qWS→HS =0.0001; s.e.=±0.0003). In contrast, in the
faster rate class (F) the rate from W to H(qWF→HF =
0.2023; s.e.=±0.0262) was more than twice the rate from
H to W(qHF→WF =0.0874; s.e.=±0.0121). The direction
of transitions between the different hidden rate classes
is also noteworthy. In the W state, transitions between
rate classes only occur in one direction, from the faster
rate class, F, to the slower rate class, S(qWF→WS =0.0814;
s.e.=±0.0196); the rate from rate class S to rate class
F was estimated to be zero (qWS→WF =0.0000; s.e.=
±0.0007). In the H state, transitions from rate class F to
rate class S(qHF→HS =0.0368; s.e.=±0.0091) were nearly
three times higher than transitions from rate class S to
rate class F(qHS→HF =0.0131; s.e.=±0.0037).

The parameters estimated in the HRM with three rate
classes for both the woody and herbaceous states—slow
(S), medium (M), and fast (F)—revealed even stronger
differences in the patterns of transition between the W
and H states. In rate class S the rate from W to H was
estimated to be zero (qWS→HS =0.0000, s.e.=±0.0002)
and the rate from H to W nearly so (qHS→WS =0.0009;
s.e.=±0.0007). In rate class M, W to H transitions
(qWM→HM =0.0383, s.e.=±0.0346) were an order of
magnitude higher rate than transitions going from H to
W(qWM→HM =0.0012, s.e.=±0.0149). In rate class F, the
transition rate estimates are very high, but transitions
from W to H(qWF→HF =99.8, s.e.=±2.9) are nearly three
times faster than transitions from H to W(qHF→WF =39.9,
s.e.=±1.9). Transitions among the different rate classes
follow a general trend in which higher rates are inferred
for transitioning toward the slowest rate class (i.e., WS
or HS; Fig. 2). Thus, it is generally more likely for a
particular branch to be found in either rate class S or
rate class M, than to be in rate class F.

Under the HRM with three rate classes, it is notewor-
thy that being W in rate class S represents an absorbing
state; that is, herbaceousness may not evolve again once
a lineage transitions into this state and rate combination.
The most likely ancestral states and rates inferred at
each node in our campanulid phylogeny imply a fairly

complicated history in the evolution of growth form.
All the earliest campanulid lineages were inferred to be
woody, including Apiidae (Fig. 2), the least inclusive
clade containing Asterales and Dipsacales. The woody
habit was retained for much of the early evolution of
Apiidae, leading to the primary crown clades (Asterales,
Apiales, and Dipscales). The herbaceous habit evolved
many times independently from the woody state.
Predominantly woody clades such as Rousseaceae
(Roussea+Carpodetoideae) and the clade comprised of
Alseuosmiaceae-Argophyllaceae-Phelliniaceae within
Asterales, Pennantiaceae, Torricelliaceae, Griseliniaceae,
and Araliaceae within Apiales, and Adoxaceae and
Caprifolieae within Dipsacales, were all inferred to
be in this absorbing woody state. Regarding ancestral
reconstructions, we note that the TH analysis yielded
very similar results (Fig. 2). Inferences based on
parsimony were also generally similar, although in this
case the woody state was retained throughout the early
splits within Araliaceae.

Rates under HRM are equivalent to substitution rates
rather than mutation rates: that is, the rates describe
what has actually happened over evolutionary time
given selective pressures and available variation, as
opposed to rates describing what was proposed by
mutation. For example, although transitions from the
woody state to the herbaceous state are likely more
difficult in some lineages than in others, there is at least
some possibility of such a transition occurring in every
lineage given sufficient time. Even if all extant members
of a lineage are woody, we presume that the capacity
exists to shut down cambial activity and shift to an
herbaceous growth form. It is important to appreciate
that the HRM relies strictly on observed state frequencies
for inferring rates of transitions within and among
different “hidden” rate classes, and may therefore be
subject to assigning very low or zero rates under some
circumstances.

Much of the action in the evolution of growth form in
campanulids has been within the exceptionally diverse
Asteraceae (Fig. 3). It appears that for nearly its entire
history, Asteraceae has been characterized by higher
rates of growth form evolution. The three-rate model
suggests that Asteraceae was ancestrally herbaceous,
and that the earliest transitions to woodiness occurred
within several small lineages (i.e., Barnadesioideae,
Mutisioideae, Stifftioideae, and Gochnatioideae; Panero
and Funk 2008) that today are largely confined to South
America (Bremer and Gustafsson 1997; Funk et al. 2005;
Panero and Funk 2008). A majority of the branches
associated with higher rates of growth form evolution—
especially transitions from herbaceous to woody
forms—are concentrated in the “out of South America”
clade (sensu Panero and Funk 2008), which makes up the
bulk of Asteraceae diversity. This clade includes several
major lineages, such as Carduoideae (2780 species),
Cichorioideae (3600 species), and Asteroideae (16,360
species), and its origin appears to coincide with the
radiation and worldwide spread of Asteraceae. Each of
the major lineages within this group shows elevated
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FIGURE 2. Time-calibrated phylogeny of Campanulidae (campanulids). The phylogeny is taken from a ML analysis of 8911 species based on
a combined analysis of 11 chloroplast genes and 1 nuclear gene. The major clades of campanulids are labeled and estimates of the most likely
growth habit (woody=brown; herbaceous=green) based on the marginal reconstruction using the parameters estimated from the TH model
and an HRM with three rate categories (HRM+3). Esc/Brun represents Escalloniales and Bruniales. Transitions between the two states in the
TH model and the six combinations of states and rates estimated from the HRM with three rate categories (slow=S, medium=M, and fast=F)
are also shown. The thickness of the arrows corresponds to the rates, with thicker arrows denoting higher rates.
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FIGURE 3. The distribution of branches inferred as being in the different rate categories in the HRM with three rate categories. Branches are
colored based on whether the marginal probability is >0.75 (dark) of being in each state and rate combination. The evolution of growth habit
in campanulids clearly varies among clades, with Asteraceae (denoted by the black dot) generally having higher rates of growth form evolution
than any other clade of campanulids.
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rates of growth form evolution, and it is especially
noteworthy that there have been repeated transitions
from herbaceous to the woody habit, often associated
with movements onto oceanic islands (Carlquist 1974).

A Note on Model Adequacy
We checked the adequacy of the HRM in describing

the observed growth form data in two ways. In the
first test, we examined the expected number of state
changes as inferred with parsimony under the HRM
model. We simulated 100 random data sets on our ML
tree using the parameter estimates from the HRM with
three hidden rate classes and for each data set recorded
the parsimony score. The observed parsimony score
for our campanulid data set (obs. Pscore=502) was
not significantly different (P=0.16) from the parsimony
scores from the simulated data (simulated Pscore 95%
CI=482.7≤#≤702.2). However, when simulating data
using the estimated parameters from the TH model, the
observed parsimony score far exceeded the range of the
parsimony scores from the simulated data (simulated
Pscore 95% CI=157.8≤#≤271.1,P<0.01).

The first test examined whether the overall number of
changes matched, but if the HRM model is appropriate,
changes should be “clumped” in characteristic ways on
the tree. In the second test, we examined the expected
distribution of state changes under the model. Within
our campanulid data set, a majority of the subclades
comprised of only woody or herbaceous states contained
few species (<50 species), but there were several that
contained as many as 330 species. For each simulated
data set, we counted the diversity contained within
subclades comprised of species with the same character
state. Based on a Kolmogorov–Smirnov test, where P>
0.05 indicated a match, 99% of the simulated data
sets from the HRM had distributions that matched the
observed, as opposed to <5% with the TH model. Thus,
the HRM seems to predict the observed clumping much
better than the TH does.

On the whole, these tests indicate that an HRM with
three rate classes adequately fits the observed data set. It
is a model that generally expects a lot of character state
transitions that are non-uniformly distributed across the
phylogeny. Had we relied on the commonly used TH
model, these tests indicate that we would be fitting a
model that expects far too little change that is too evenly
distributed as compared to what was observed.

DISCUSSION

For decades the dominant models in comparative
biology have been homogenous through time and
across taxa. As trees have grown dramatically in scope
and size, an assumption of homogeneity becomes less
defensible. There are undoubtedly unseen factors that
affect the evolution of a phenotypic character and this
will often presumably manifest as differences in the

rate of evolution of the character across lineages. The
HRM developed here provides a means of detecting
such branch-specific differences in the evolution of a
binary character. Unlike existing approaches, for both
continuous and discrete characters, which require a priori
assignment of models to different branches (O’Meara
et al. 2006; Thomas et al. 2006; O’Meara 2007; Beaulieu
et al. 2012a), the HRM uses the observed character data
directly to infer where the evolutionary model shifted
in a phylogeny. The HRM can detect branch-specific
rate heterogeneity when it exists and, in such instances,
the model fits patterns of character change in observed
data sets more adequately than simpler models of binary
character evolution.

There are several other models that relate to the
HRM. The HRM was inspired by the covarion models
of nucleotide evolution (Fitch and Markowitz 1970;
Galtier 2001; Penny et al. 2001), and can be viewed as
a generalization of that approach. These models limit
Q to contain one quadrant with zero transition rates,
one where transition rates are allowed to be non-zero,
and the other two quadrants relating to transitions from
one matrix to the other. Felsenstein and Churchill (1996)
developed a specific HMM for inferring rates from DNA
sequences. These models assume that an underlying
discrete and “hidden” rate category evolves along a
sequence under a Markov process, with all taxa having
the same rate category for a given site. In contrast, the
HRM uses a single character (although an extension
to multiple characters is possible) and allows the rate
model to evolve along a phylogeny rather than along a
sequence. Phylogenetic mixture models, like the discrete
gamma (Yang 1994), or the more general Pagel–Meade
model (2004), appear similar to the HRM in allowing
sites to be evaluated under different transition models.
However, these methods work by summing likelihoods
across different models rather than using one model
with hidden rates.

The threshold model (Wright 1934; Felsenstein 2005;
Felsenstein 2012) is similar to the HRM in allowing
different effective transition rates in different clades.
Under the threshold model, a continuous trait (the
“liability”) evolves along a phylogeny under a Brownian
motion process, and the state of the observed discrete
trait depends on whether the liability is above or
below a certain threshold. Where the liability is near
the threshold, transitions between discrete states may
happen frequently, but where the liability is far from
the threshold, these transitions occur more infrequently.
This allows for continuous change in transition rates
unlike the HRM, which has a fixed number of rates.
In theory, the ancestral state of the liability could be
inferred (with some uncertainty), allowing different
parts of the phylogeny to be distinguished as evolving
at higher or lower rates, just as the ancestral state of
rate categories can be inferred with the HRM. One
somewhat odd feature of the threshold model is that
the transition rate will typically decrease as one moves
away from a discrete transition both forward and
backward in time. At a transition, the liability crosses
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the threshold: through time, its mean remains at the
threshold, but its standard deviation (expected distance
from this threshold) increases with the square root of
time, making it less and less likely to cross the threshold
again. There is, therefore, the expectation under the
threshold model that an interesting clade (one with
multiple discrete character transitions) will slow down
in the future (and was slower in the past). HRM is not
constrained in this way: clades may increase in transition
rate through time up to some maximum (e.g., if the
fast rate category is absorbing), decrease, or remain
constant. We note, however, that a modification of the
threshold model to include attraction of the liability
to the threshold (using, say, an Ornstein–Uhlenbeck
process) would reduce this behavior of the threshold
model. Another important property of the HRM is that
it allows for asymmetry in the rates of gains and losses,
and for the evaluation of other specific rate hypotheses,
such as whether a rate between two states is zero.

The model that is the most directly comparable
to the HRM is the “precursor model” of Marazzi
et al. (2012). The precursor model specifies a model of
evolution, Q, that contains only two transition rates: one
corresponding to transitions between an observed state
and a hidden state, and one corresponding to transitions
between the hidden state and the other observed state.
In other words, the model describes the hidden state as
“facilitating” transitions to an observed state. This model
is nested within the more general HRM, and illustrates
an efficient use of parameters in creating a specific,
biologically meaningful model in the HRM family.

An important thing to note is that the HRM does not
just apply to cases in which there are two observable
states that may have hidden rates. In a general sense,
it can be used in any instance where the number of
observed states is less than the number of actual states,
even if rates are homogenous. For example, Maddison
(1993) provides a hypothetical example of a set of taxa
where the observed states are red tails, blue tails, and
no tails. One could treat this in the HRM framework
as having four hidden states (tail red, tail blue, tailless
red, tailless blue) with three displayed states (tailless red
and tailless blue both present because tailless color is
unknown). One would be able to use the HRM model
here to address questions such as whether particular
tailless species are more likely to have genes for red or
blue color. For some parameter values there is even some
information in the model on whether color can change
when in the tailless state. Similarly, HRM models could
be used for nucleotide or amino acid data, doing the
same sort of fitting as a covarion model (which is one
kind of HRM) but allowing more flexibility. For example,
there could be three rate categories: fast (no selection),
slow (stabilizing selection with occasional new optima),
and off (strong stabilizing selection to a fixed
optimum).

The development of this model takes place under the
assumption that diversification rates are independent
of the focal trait (though not necessarily constant).
As shown by Maddison (2006), methods can be

misled if this assumption is not true, and the
HRM model developed here is no exception. We are
developing an implementation that also takes into
account diversification, but the approach developed here
may still be useful. Users should take note, however, of
the potential issues that may occur if the focal traits, or
any of their correlated traits, are themselves associated
with differential diversification rates. However, for our
growth form data set, it seems the HRM adequately fits
the data even without taking differential diversification
into account, and this is likely to be the case in many
empirical applications.

Our analysis of growth form evolution illustrates
what we imagine to be the primary use for the HRM
by comparative biologists. The goal is to evaluate a
number of models, choose between these using the
AIC and potentially other factors, and then use the
best model(s) to make biological inferences. Having
selected a model, we obtained ML parameter estimates
from the model, and centered our discussion on the
biological significance of these parameter estimates and
the corresponding inferred ancestral states. We offer
a few notes of caution, however. First, from a model
comparison perspective, the HRM will often be difficult
to fit to empirical data, largely as a consequence of the
large number of parameters included in the model. This
is not to say that a complex HRM should not be applied to
smaller data sets. As our simulations suggest, there will
be circumstances in which data sets containing relatively
few species can appropriately fit a more complex model.
Second, in the presence of a single underlying “hidden”
state, meaningful differences in the associated transition
rates can be detected, as long as there are enough changes
observed in the data. However, as the number of rate
classes is increased, observed character changes may be
insufficient within less inclusive clades. In this regard,
it may be prudent to interpret the results in light of the
standard error associated with each of the parameters,
or perhaps to focus on qualitative statements about
differences in transition rates. Note that HRM models
may be embedded in Bayesian approaches as well, to
incorporate priors and to use reversible jump Markov
Chain Monte Carlo or similar approaches to weight
models.

One general implication of the HRM concerns the
way in which patterns of character evolution are
addressed across larger, older, and globally distributed
clades. Most studies of these questions, at least within
flowering plants, have tended to rely on trees with
very sparse taxon sampling, usually including one or
a few representative species from each of the major
lineages within the group (e.g., Sargent 2004; Vamosi and
Vamosi 2010; Geeta et al. 2012). Generally speaking, such
limited taxon sampling has biased the analysis of broad
evolutionary patterns toward more conserved characters
that vary little within the large clades represented
by the exemplars. More complex and parameter-rich
models of character evolution, such as the HRM, coupled
with improvements in our ability to sample taxa more
extensively, will help to remove this constraint and
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facilitate studies of characters showing a wider range in
evolutionary lability.

This perspective relates directly to the study of
growth form evolution in flowering plants. Traditionally,
despite evident broader patterns, growth form has
been considered too labile to be analysed across
large angiosperm clades that tend to occupy a wide
range of environments (e.g., Cronquist 1968; see
Donoghue 2008). Furthermore, transitions between
woody and herbaceous growth forms appear to be
fairly simple genetically and developmentally (Groover
2005), involving the suppression and re-expression
of only a few genes regulating the cambial activity
necessary for wood formation (Lens et al. 2012). Our
analysis of the evolution of growth form in campanulids
clearly supports the view that growth form is highly
labile, but, more importantly, it shows that the rate
at which growth form evolves varies enough among
clades to be relevant to our understanding of the
evolution of growth habit. Thus, growth form appears
to be highly constrained in some major clades, such
as Aquifoliales, whereas it is much more labile in
other clades, especially Asteraceae. Such observations
suggest important differences in factors such as the
geographic and environmental ranges in different clades
and/or genetic/developmental factors that have limited
or promoted transitions in certain regions of the tree.
Multiple interacting factors may be the rule, as suggested
by Asteraceae. By virtue of their seed dispersal and
establishment mechanisms, they appear to have a higher
likelihood of occupying isolated oceanic islands, where
the woody habit may have been favored in multiple
lineages (Carlquist 1974). At the same time, it is important
to note that shifts back and forth between woody and
herbaceous forms may be especially likely in clades
such as Asteraceae where many species are somewhat
intermediate in form, being either perennial herbs or
sub-shrubs, sometimes dying back to a persistent woody
base. Likewise, shifts may be much less likely in clades,
such as Aquifoliales, comprised exclusively of larger
shrubs and trees.

Whatever biological factors might underlie differences
in rates of growth form evolution, our results clearly
demonstrate that major differences exist and that
the introduction of hidden rate classes allows the
identification of models that can dramatically improve
the fit to the underlying data. The fact that the location
of shifts between rate categories can be mapped onto the
phylogeny makes it possible to more accurately pinpoint
where underlying factors may have changed (cf. Marazzi
et al. 2012). The examination of multiple rate shifts has
the potential to narrow down on one or a few common
causal factors. Importantly, such studies can now be
conducted by direct reference to phylogenetic trees,
and we no longer have to circumscribe such analyses,
or describe the results, by reference to traditional
taxonomic groups. That is, we at least have the possibility
of discovering that the location of a rate shift does not
correspond precisely to some previously named clade,
but instead to a (perhaps unnamed) less inclusive or

more inclusive clade (Smith et al. 2011). We suspect
that phylogenetic analyses focused on the “hidden”
factors promoting or constraining character change
will ultimately yield a far richer understanding of the
evolutionary process.

SUPPLEMENTARY MATERIAL
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http://datadryad.org and in the Dryad data repository
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