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Understanding how plants survive drought and cold is increasingly
important as plants worldwide experience dieback with drought in
moist places and grow taller with warming in cold ones. Crucial in plant
climate adaptation are the diameters of water-transporting conduits.
Sampling 537 species across climate zones dominated by angiosperms,
we find that plant size is unambiguously the main driver of conduit
diameter variation. And because taller plants have wider conduits,
and wider conduits within species are more vulnerable to conduction-
blocking embolisms, taller conspecifics should be more vulnerable than
shorter ones, a prediction we confirmwith a plantation experiment. As
a result, maximum plant size should be short under drought and cold,
which cause embolism, or increase if these pressures relax. That conduit
diameter and embolism vulnerability are inseparably related to plant
size helps explain why factors that interact with conduit diameter,
such as drought or warming, are altering plant heights worldwide.

adaptation | allometry | climate change | forest dieback |
embolism vulnerability

Vegetation height is the most conspicuous biotic attribute of
terrestrial landscapes, varying across biomes and as climates

change (1). From tundras and deserts to temperate and tropical
moist forests, vegetation height becomes predictably taller as tem-
peratures become milder and conditions moister (1–4). As climates
change, formerly tall forests worldwide are experiencing dieback or
mortality under increasingly erratic rainfall (5, 6). The largest trees,
which would be expected to have greater root reach, more stem
water storage, and thus more resistance to drought, instead are often
especially vulnerable (7–12). At the same time that tall trees die or
become shorter, formerly low tundras are growing taller under
warming (13–15). Because vegetation height predicts crucial eco-
system services, from primary productivity and carbon sequestration
to landscape heat absorption (6), it is essential to understand why
changes in climate cause changes in vegetation height (7, 8, 12, 16).
A central link between plant height and climate is water con-

duction (4, 5, 10, 12). Plants conduct water in narrow conduits under
negative pressure. Drought or freezing can break the conductive
stream, blocking conduits with gas embolisms (17–19). Abundant
embolisms often involve the death of terminal branches or even the
whole plant (5, 20). Across species, higher wood density and stomata
that close sensitively in response to water deficit are often associated
with greater resistance to embolism (7, 12, 21–23). The membranes
of pits, small apertures allowing fluid flow between conduits, are
also implicated, with thicker membranes and less total interconduit
membrane area per conduit volume being associated with greater

embolism resistance across species (24–26). Within species, or even
within individual stems, conduit diameter is strongly associated with
vulnerability to embolism, with wider conduits embolizing more
readily than narrow ones (27–33). So, though it remains debated
why larger individuals should be more vulnerable to drought and
why hydraulic adaptation to climate alters plant size, these phe-
nomena are certain to involve embolism resistance (12, 34).
Of the factors involved in embolism resistance, conduit diameter

is manifestly associated with both climate and plant size, but which
of these two factors explains most of the variance in mean conduit
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diameter across individuals remains unclear. Water-conducting
conduits are on average narrower in plants of dry or cold areas
compared with plants in moist, warm areas (18, 19, 35). Narrow
conduits better resist the formation of gas embolisms that block
the conductive stream (27–33). Because cold and drought place
plants at risk for embolism, biologists have interpreted narrow
conduits as key adaptations to these conditions, and climate as the
main driver of conduit diameter variation (18, 19, 35).
However, in addition to climate, plant height also predicts conduit

diameter. Taller plants consistently have wider conduits than short
ones, suggesting that, rather than climate, the main driver of varia-
tion in conduit diameter across individuals could be plant height (31,
36–39). Selection favors narrow distal conduits, because diffusion of
a given unit of water out of terminal leaf veins, essential in driving
the conduction stream, is maximal when conduits are very narrow.
This is in line with the general tendency for selection to maximize
exchange surface areas relative to fluid volumes, as in the capillaries
of animal circulatory systems (38, 40, 41). Hydraulic resistance would
accumulate linearly if conduits were of constant diameter, and
would lead to a continual decline in water conduction with height
growth (17, 31, 36, 38, 39). Because they reduce friction against
conduit walls per unit water volume, small increases in conduit
diameter from the tip to the base of a plant should counteract this
increase in resistance, meaning that taller plants, with their longer
pathways, should have predictably wider conduits (42). Hydraulic
optimality models such as that of West, Brown, and Enquist
(WBE) (38) predict the tip-to-base conduit diameter (D)-widening
rate with increase in stem length (SL) that should minimize drops
in per-leaf area conductance with height growth, embolism risk, and
construction costs (31, 36, 39, 40, 42–45). Modeling the relationship
between total plant length and conduit diameter, WBE implies that
large sample sizes should converge on a scaling exponent of or
somewhat above D ∝ SL0.2 (36) (SI Appendix, Fig. S1).
Previous attempts to test these predictions and distinguish be-

tween climate and plant size have limited sampling to individual
clades or to scattershot sampling across flowering plants, or have
not properly standardized for height (19, 35, 37, 46). As a result, that
size is the main driver of mean conduit diameter across species
remains debated, theory regarding hydraulic adaptation to climate
does not currently include plant size, and studies of plant hydraulics
still do not routinely take plant height or distance from the stem tip
into account (18, 47–50).
However, if height is the main driver of variation in mean conduit

diameter, then this leads to an important expectation: If taller indi-
viduals have predictably wider conduits, and wider conduits within
species are more vulnerable to embolism, then taller individuals
should be more vulnerable to embolism than shorter conspecifics.
Such a finding would provide critical mechanistic insight into studies
that document the preferential vulnerability of taller individuals and
the effects of climate change on vegetation height (3, 7–12, 16).
To distinguish height versus climate as the main driver of variation

in conduit diameter and to test the prediction that taller indi-
viduals should be more vulnerable to embolism, we used a two-step
procedure. First, we used a comparative approach sampling across
biomes and lineages of flowering plants (angiosperms). Angio-
sperms conduct water in long multicellular conduits known as
vessels. We gathered vessel diameter and height data from 19
communities spanning most of angiosperm climate space from
the tropics to the north and south temperate zones. Sampling
intensively within and across communities enabled comparison
of vessel diameter–stem length scaling across differing macroclimatic
conditions. This approach unequivocally identified height rather than
climate as the main driver of variation in mean vessel diameter.
Across biomes, vessel diameter increases with plant height predictably
and in agreement with the expected rate, strongly implicating the
conduit–height relationship as one favored by selection. Second,
we explored the consequences for embolism vulnerability of this
universal conduit widening with height. The greater vulnerability of

larger individuals has been documented in previous studies (7, 10,
16, 51) but the role of predictable conduit scaling underlying this
relationship has never been examined. Our plantation experiment
using three species (two angiosperms and one conifer) confirmed
our prediction that, with their wider conduits, taller individuals
are more vulnerable than shorter conspecifics.
Our results mandate standardizing for plant size in hydraulics

studies, and provide key insights for theory regarding plant hydraulic
adaptation. Predictions emerging from our work range from ex-
pectations regarding plant plastic response to microsite condi-
tions to the relationship between evolutionary and ontogenetic
allometry in plant vascular systems. Moreover, finding that height is
the main driver of conduit diameter variation allows for a long-
overdue integration of plant size into thinking regarding the re-
lationship between hydraulics and climate, helping explain why the
largest conspecifics should be preferentially vulnerable and why
shifts in climate provoke changes in vegetation height.

Results
Our comparative sampling included 1,535 samples from 537 species,
43 orders, 140 families, and 374 genera. The 19 communities spanned
most of the climates occupied by angiosperms (Fig. 1, SI Appendix,
Table S1, and Dataset S1). Although climate is widely regarded as
the main driver of variation in mean vessel diameter across indi-
viduals (18, 19, 35, 47), our data show unambiguously that the
main driver is stem length. To examine the relative abilities of
climate and stem length to predict variation in mean vessel diameter
at the stem base (VDbase), we used multiple linear regressions that
included stem length, climate variables, and wood density. The
influence of wood density on conduit scaling has never been exam-
ined, but plants with lower wood density are often more vulnerable
to embolism (21–23, 52), so density could play a role in predicting
VD across species. In the 7 highest-ranked multiple regression
models of the 119 fit (SI Appendix, Table S2), stem length was by far
the most important explanatory variable (Fig. 2), nearly 10 times
more important than temperature variables, as judged by squared
standardized coefficients β2stand (β2standSL = 0.45 to 0.46 vs.
β2standTemp = 0.05 to 0.07). Temperature, which was positively
associated with VDbase, was followed closely by the next most
important variable, wood density (β2standDens = 0.03), whose
negative slope meant that plants with low density tend to have
wider vessels for a given height. Precipitation (Ppt), traditionally
regarded as strongly driving vessel diameter variation (35), had

Fig. 1. Sampling across climates and vegetation types. The 19 sampled
communities spanned virtually the entire range of angiosperm climates as
described by mean annual temperature and precipitation (SI Appendix, Table
S1), as well as the world’s major vegetation types from the north temperate
zone to the tropics, and from there to the south temperate zone.
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negligible importance values (β2standPpt < 0.01) so, rather than
precipitation, instead plant height, distantly followed by tempera-
ture and wood density, drove variation in mean vessel diameter.
Moreover, our data showed that mean vessel diameter scales with

plant height at virtually the exact rate predicted (36, 38, 45), as VD ∝
SL0.2 (Fig. 2 and SI Appendix, Fig. S1 and Table S3). Because
variation in terminal vessel diameter leads to variation in basal
vessel diameter given a constant tip-to-base widening rate, to test
the prediction that VD ∝ SL0.2 it was necessary to take the stem tip
vessel diameter–stem length widening rate into account. Across our
data, species mean VDbase scaled with SL with a slope of 0.44, and
VDtip scaled with SL as 0.20. We calculated the widening ratio (WR),
given that if VDbase ∝ SLa and VDtip ∝ SLb, thenWR = SLa/SLb for a
WR of 0.24 (SI Appendix, Table S3). A different means of stan-
dardizing for tip vessel diameter (36) involved calculating tapering
ratio T for each sample as T = VDtip/VDbase, computing species
averages, and then fitting the slope of T against stem length, which
gave a very similar slope of 0.23 (SI Appendix, Table S3).
Given VD–SL scaling across climates, taller plants have pre-

dictably wider conduits, and if wider conduits within species are
more vulnerable to embolism than narrow ones (19, 27–30, 32, 33,
53–55), then taller plants should be more vulnerable to embolism

than shorter conspecifics. Studies in trees 6 to 100 m tall show that
taller individuals of a species, or more basal parts within the same
individual, are often more vulnerable than shorter individuals or
more distal parts (7–10, 27, 29, 30, 32). These studies are consistent
with tip-to-base conduit widening and the greater vulnerability of
wider conduits. Our plantation experiment focused on plants 47 to
377 cm tall, because the most drought- and cold-prone habitats on
Earth fall within this height range, for example the four coldest (mean
height 2.0 m) and four driest (mean height 3.3 m) communities in our
dataset. As a result, the ≤4 m height range is a crucial one for un-
derstanding the role of stature in plant hydraulic adaptation to ex-
treme environments. Moreover, because the conduit diameter–stem
length relationship follows a power law-like function (SI Appendix,
Figs. S1 and S2), small height changes in plants ≤4 m tall imply
marked changes in vessel diameter, meaning height-associated differ-
ences in embolism vulnerability should be highly visible to selection.
Our experimental plantation included two angiosperms with

contrasting wood densities and therefore differing VDbase–SL
intercepts, as well as differing thicknesses of intervessel pit mem-
branes (SI Appendix, Fig. S3): Moringa oleifera Lam. (Moringaceae,
Brassicales), with low wood density, relatively wide vessels for a
given height, and thin pit membranes, and Casimiroa edulis La Llave
(Rutaceae, Sapindales), with higher wood density, narrower vessels,
and thicker membranes. We also included Pinus ayacahuite Ehrenb.
ex Schltdl. (Pinaceae, Pinales), which conducts water in tracheids
rather than vessels. In all cases, with their wider conduits (SI Ap-
pendix, Fig. S3), taller individuals were significantly more vulnerable
to embolism than intermediate or short conspecifics, as assessed by
P50, the water potential at which 50% of conductivity was lost. Taller
height categories had values of P50 that were always less negative
and had 95% confidence intervals that did not overlap with those of
shorter categories (Fig. 3), indicating that in taller plants less tension
was required to achieve a similar reduction of stem conductivity (SI
Appendix, Table S4). Tests in M. oleifera and C. edulis, in which we
allowed vessels to embolize and then perfused the vessels with stain,
showed within stem segments that wider vessels embolized before
narrow ones (SI Appendix, Fig. S3).

Discussion
In understanding worldwide shifts in vegetation height as climates
change, it is essential to untangle the relationship between climate,
plant size, and the diameters of water-conducting conduits. Our
data show that plant height, rather than climate, is by far the main
driver of variation in species mean vessel diameter across flowering
plant lineages and biomes (SI Appendix, Table S2). The effect of
plant height on vessel diameter was almost 10 times that of the next
most important variable, temperature (Fig. 2). Plants in warmer
communities did have on average wider vessels than similar-sized

A B

Fig. 2. Stem length as the main driver of variation in vessel diameter across
species. (A) Stem base vessel diameter VDbase scales with stem length SL with a
slope of 0.44 and at the stem tip with a slope of 0.20, indicating that the
widening rate across species is 0.24, coinciding with the rate predicted by
optimality models to minimize drops in per-leaf area conductance with height
growth, ***P < 0.005. (A, Inset) VDbase–SL regression based on phylogenetically
independent contrasts. (B) We fit regression models predicting VDbase given SL,
climate variables, and wood density. Orange bars give the ranges of relative
importance values (squared standardized coefficients) for each category of
variables from the seven best-fitting models (whose cumulative Akaike weights
sum 0.95; SI Appendix, Table S2). Although climate is traditionally regarded as
themain driver of interspecific variation in mean vessel diameter, stem length is
by far the main driver, having a relative importance nearly 10 times larger than
temperature, with precipitation not contributing to explanation in any model.
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Fig. 3. Vulnerability to embolism increases with plant height. Percent loss of stem hydraulic conductivity (PLC) versus xylem water potential for (A) M. oleifera and (B)
C. edulis, both vessel-bearing flowering plants, and (C) the tracheid-bearing conifer P. ayacahuite. P50 is an index of vulnerability, the water potential at which 50% of
conductivity is lost, and is less negative (and thusmore readily reached) in taller plants. Dashed lines are 95% confidence intervals for P50. Details are in SI Appendix, Table S4.
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plants in cold communities. Although this pattern is consistent with
the traditional account that selection favors narrow, embolism-
resistant vessels in cold climates (18), the effect of temperature
was very small compared with the effect of plant size. By way of
illustration, substituting the mean values in our dataset for plant
height (5.67 m), wood density (0.547 g/mm3), and precipitation
of the warmest quarter (370.8 mm) in the best-fitting model
from SI Appendix, Table S2, the predicted basal vessel diameter
would be 43 μm in a tree growing at 3.2 °C mean annual temper-
ature and 70 μm in one growing at 27.3 °C (the extremes of mean
annual temperature in our dataset, covering almost all of the mean
temperature range occupied by angiosperms). In contrast, using the
mean values for density, precipitation, and temperature (17.4 °C),
the predicted basal vessel diameter would be 13 μm for a plant
0.11 m tall and 108 μm for one 32.5 m tall (the extremes of height in
our dataset, covering just a third of the angiosperm height range).
Comparing these ranges—43 to 70 μm across a near-comprehensive
range of temperatures and 13 to 108 μm across a comparatively
modest range of heights—shows that change in vessel diameter
with plant height is vastly more marked than with climate.
That plant height is the main driver of conduit diameter var-

iation means that plant hydraulic adaptation inevitably involves
stature (12, 22, 31, 38, 39). A canonical example is provided by
cold environments, where narrow conduits are regarded as key
adaptations because of their resistance to freezing-induced embo-
lism (18). But taking plant height into account showed that cold
communities had height-standardized vessel diameters at the stem
base (VDbase–SL residuals) that were not exceptionally narrow (SI
Appendix, Fig. S4). They did, however, have vessels that were
narrow in absolute terms: Maximum species mean VDbase of the
coldest community we sampled, at treeline in the Pyrenees, was just
88.6 μm, versus 244.3 μm in the warm lowland Mexican rainforest.
Without highly negative VD–SL residuals, narrow absolute VDbase
inevitably requires small plant size. Indeed, median height across the
treeline communities was just 1.2 m, versus 12.2 in the rainforests.
If selection acts against wide conduit diameters in cold situations
(18, 19, 28, 29), then it does so by reducing plant size in the context
of a constant conduit diameter–plant height relationship (45, 56).
Given a constant conduit diameter–plant height relationship,

our experimental results were congruent with the expectation that
the tallest individuals of a species have predictably wider conduits and
so, all else being equal, taller individuals should be more vulnerable
than shorter conspecifics. Across the 185 individuals that made up our
drought experiment, taller size classes, with their predictably wider
conduits (SI Appendix, Fig. S3), were significantly more vulnerable
than shorter ones of the same species (Fig. 3 and SI Appendix,
Table S4). That taller plants have predictably wider conduits, and
individuals with wider conduits are more vulnerable to embolism than
shorter conspecifics with narrower ones, is consistent with the other-
wise puzzling preferential vulnerability of large trees (7–10, 12, 22).
These results point to important considerations for the study of

plant hydraulics. One is that comparing variables such as vessel
diameter, conductance, or vulnerability to embolism must take into
account scaling not only of basal vessel diameter but also terminal
twig vessel diameter with height (Fig. 2A); much of the notorious
variability about the y axis in intraspecific vulnerability curves
is likely accounted for by stem length differences (Fig. 3). Moreover,
detailed documentation of vascular allometry can provide models of
the plant height–climate relationship with mechanistic detail that is
currently “black-boxed” (3, 4, 12), for example, replacing models of
bulk flow through a porous medium with explicit modeling of wid-
ened conduits (31, 36, 38, 39, 42). In the same vein, our results also
highlight the need to study resistance and conductance not only in
segments but along the entire conductive pathway.
Even more importantly, our data show how plant size must be

integrated into thinking regarding plant hydraulic adaptation to
climate (Fig. 4) (2, 12, 45). Anatomists have often noted that
conduit diameters are predicted both by plant size and climate (45,

57–59), but there has never been an account of how height, con-
duit diameter, and climate interact simultaneously. Our results
point to the following integration, which can be regarded as a
rebuilding of Carlquist’s ecological wood anatomy around conduit
scaling with plant size as a primary pole of natural selection on
plant hydraulic systems (57, 58, 60). Vessel diameter scales pre-
dictably with stem length as approximately VD ∝ SL0.2, the result
of selection minimizing the drop in per-leaf area conductance with
increasing conductive path length as height increases (31, 38). In
general, then, height determines vessel diameter across the array
of height ecological strategies, understory to canopy (2, 4), that is
found in every community (Fig. 4). Because taller individuals have
predictably wider conduits (not only at the stem base but also at
the tip; Fig. 2A) and because wider conduits are more vulnerable
within species than narrow ones, plants should produce conduits
no wider than those permitted by embolism risk given microsite
and height ecological strategy. Therefore, maximum height for a
given individual should be at least in part determined by the max-
imum mean conduit diameter permitted by microsite conditions
such as water availability, temperature, rooting depth, and soil type
(cf. refs. 4, 5, 12, 16, 31, 56, and 61). Across climates, the maximum
vessel diameter permitted by selection in drylands and cold envi-
ronments with short growing seasons (or long growing seasons with
many freeze–thaw events) is narrower than in warmer, moister en-
vironments. This means that maximum height in drylands and cold
environments is necessarily shorter (Fig. 4). That individuals should
grow to the maximum mean conduit diameter and therefore plant
height that is permitted by microsite conditions and remain there
unless conditions change is consistent with observations of trees
fluctuating around constant heights for centuries (62, 63). In moist
areas that experience frequent freezes per growth season, which
act against wide conduits, plant height should be low despite water
availability that would otherwise permit taller plants (64). An-
thropogenic warming in cool sites should relax selection against
wide vessels and permit taller plants, consistent with observed
tundra height increase (13–15). At any given site, the tallest plants,
which have the widest vessels from tip to base, should be more
vulnerable than shorter conspecifics, consistent with the otherwise
inexplicable dieback of taller conspecifics under climate change-
induced drought in forests worldwide (7–10). Through its elemental
relationship with vessel diameter, climate, and wood density, plant
size asserts itself as a crucial element in plant hydraulic adaptation.

Materials and Methods
Teasing apart the relative effects of climate and plant size on vessel diameter
variation required sampling across awide range of angiosperm sizes and climates,
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COLD/DRY COMMUNITY
lower variance in SL & VD
narrower max VD
shorter max SL

VD    SL scaling lineWARM/ MOIST COMMUNITY
higher variance in SL & VD
wider max VD
taller max SL

Fig. 4. Climate, vessel diameter, and stem length/plant height in plant hy-
draulic adaptation. Vessel diameter (VD) scales with stem length (SL) similarly
across all communities, represented by the diagonal line. The green box denotes
a warm and moist community, with wide variance in plant height, represented
by the width of the green box and the wide range of plant silhouettes, with a
correspondingly wide variance in species mean vessel diameters, represented by
the height of the green box. The narrower ranges of height and vessel diameter
in a cold, dry community are represented by the yellow box. Because wider
vessels are more vulnerable, the maximum vessel diameter permitted in the cold/
dry community is narrower, helping explain why maximum plant height in these
communities is lower.
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so we gathered new data from 352 species, complementing themwith previously
published data (37) from 185 species. In the field, we sampled either all self-
supporting woody species (low-diversity communities) or the 20 commonest
species, plus additional species as necessary to cover phylogenetic (excluding
monocots) and morphological diversity (habits and wood density), for a range of
18 to 41 species per community. Plants within communities grew in the same
general area, except those of the New South Wales temperate rainforest com-
munity in Australia, which consisted of small climatically and vegetationally similar
localities scattered along the central east coast of the state (coordinates for all
collections are given in Dataset S1). We measured heights (SL) of trees and
shrubs <8 m with a tape measure, following the longest branch with a flexible
tape if very sinuous, in an effort to measure the longest conductive path length
per individual. We use “height” and “stem length” interchangeably, indicating a
presumably close proxy for the driving variable, the length of the conductive
path. We measured the height (base to highest leaf) of individuals >8 m with a
TruPulse 200B laser rangefinder (Laser Technology). We collected samples of the
outermost basal secondary xylem (wood), as low as possible above buttresses,
roots, or basal swellings, usually sampling three individuals per species (88%; one
or two samples for the remainder). We also collected the terminal portion of the
farthest twig from the base from 1,166 individuals. We cut thin sections for light
microscopy, measuring with an ocular micrometer 25 randomly selected vessels,
scanning across growth rings when present. We calculated wood density as the
oven-drymass:fresh (or, for material pickled in ethanol, hydrated for 24 h) volume
ratio using water displacement (65).

To test for differences in the VDbase–SL relationship across climates, we
extracted 19 climate variables from WorldClim v.1.4 (www.worldclim.org)
using the R library raster (cran.r-project.org/package=raster) based on the
geographical coordinates of the 537 species in the comparative dataset, as
well as wood density (Dens). We then examined the association between
climate variables and VDbase, VDtip, SL, and Dens using Pearson correlation
(SI Appendix, Table S5). We also calculated the correlations between climate
variables and the residual variation of VDbase once SL had been taken into
account through simple linear regression.

To compare the relative abilities of climate and stem length to predict variation
in mean vessel diameter at the stem base (VDbase), we fitted multiple linear re-
gressions that included SL, climate variables, and Dens, with a model selection
process using the Akaike information criterion (66). We fit 119 models with all
combinations of from one to four predictor variables including SL, Dens, a pre-
cipitation variable, and a temperature variable (SI Appendix, Table S2). These
models were based on the 524 species for which we had data for all explanatory
variables (wood density was not available for some species). We included in this
process the climate variables that were strongly correlated with VDbase (R ≥ 0.4).
This was the case for four variables reflecting precipitation and five variables
reflecting temperature (SI Appendix, Table S5). To avoid collinearity in models,
only one precipitation and one temperature variable could be included at the
same time in each model. For each model, we calculated the corrected Akaike
information criterion (AICc) and the adjusted R2. We also calculated ΔAICc, the
difference between model AICc values and the AICc of the best-approximating
model (i.e., that with the smallest AICc in the model set), and finally the Akaike
weight (w), an index of the probability of a model being the best-approximating
model (67). We identified the best-ranked models, representing a 95% confi-
dence set of models (i.e., with cumulative Akaike weights of 0.95; SI Appendix,
Table S2). In this set of seven models, the relative importance of explanatory
variables was depicted using squared standardized coefficients (β2stand) (68). We
used bootstraps to calculate confidence intervals for these coefficients (69). We
checked regression assumptions, including collinearity, which we assessed
through variance inflation factors (which were <2) (70).

To test the prediction that taller plants should be more vulnerable to
embolism, we used plantations of two flowering plants,M. oleifera and C. edulis,
and the conifer P. ayacahuite, which conducts water in tracheids rather than
vessels. Including a tracheid-bearing species helped exclude open-conduit arti-
facts (71–73), because tracheids are much shorter than vessels. We focused on
within-species comparisons, because climate change alters maximum vegetation
height through its effects on the tallest species at a given site. Conduit
diameter predicts embolism risk better within (10, 28–30, 32, 53, 74) than
across species (75), presumably because although pit membrane character-
istics vary along the lengths of stems (76), these features vary less within than
across species (26).

We tested 185 individuals in total, 56 plants 47 to 242 cm tall for C. edulis, 72
plants 69 to 377 cm tall for M. oleifera, and 57 plants 61 to 250 cm tall for
P. ayacahuite. We estimated conduit lengths (77) across the different plant
height classes examined and tested segments consistently longer than conduit
lengths (SI Appendix, Table S6). We imposed the required xylem tensions by
drying plants in the soil or removing them from the soil with roots and allowing
them to dry at room temperature for varying times (78, 79). We used leaf water
potential to determine xylemwater potential. To measure leaf water potential,
we sealed three leaves per plant in foil laminate bags for an hour to allow
equilibrium between xylem and leaf water potential. We measured leaf water
potential with a Scholander pressure chamber (PMS Instrument), working with
a 0.1- to 7-MPa range of water potentials. After exposing individuals to the
required xylem tension, we cut segments of the basal stem underwater. To
measure the initial conductivity (Kh), we connected the segments to tubing with
a gentle siphon of filtered 10 mM KCl solution at 20 °C and ∼50-cm height [a
“Sperry apparatus” (80)]. Water was collected from the end of the stem and
weighed on a Sartorius TE1245 analytical balance. Upon constant flow, we took
measurements every 30 s for 3 min. To estimate maximum conductivity (Kmax),
we flushed the segments with filtered 10 mM KCl at a pressure of 1.5 bars until
no increase in conductivity was detected. Conductivity was calculated as mass
flow rate through the segment, divided by the pressure gradient (m4·s−1·MPa−1).
We used the percentage loss of conductivity (PLC) as a measurement of
embolism vulnerability, estimated as PLC = 1 − (Kh/Kmax) · 100.We divided plants
into a tall (>150 cm) and a short (<150 cm) category in C. edulis and
P. ayacahuite. In M. oleifera, we divided plants into short (<150 cm), in-
termediate (150 to 250 cm), and tall (>250 cm) categories. We fit Weibull
models to PLC vs. xylem water potential per size class and calculated P50, the
water potential at which 50% of conductivity was lost, and 95% confidence
intervals using the R package fitplc (cran.r-project.org/package=fitplc).

Finally, we built a phylogeny (SI Appendix, Fig. S5) based on the backbone
tree of Soltis et al. (81), using APG IV (82) to place some groups. Some rela-
tionships were resolved by reference to phylogenetic studies of specific
groups. Using “ape” (ape-package.ird.fr), “phytools” (cran.r-project.org/package=
phytools), and branch lengths of one, we tested for significant phylogenetic
signal in residuals of the models VDbase–SL (SI Appendix, Table S7) and the first
model in SI Appendix, Table S2, based on randomization tests of phyloge-
netically independent contrasts and using the K statistic (83). Our phylogenetic
tree included polytomies, so we repeated calculations 1,000 times using ran-
domly resolved trees. We report ranges for K and P values based on these
repetitions. Although phylogenetic signal was statistically significant (P < 0.05;
SI Appendix, Table S7), values of K ≤0.18 suggested there was little tendency
for closely related species to resemble one another in their VDbase–SL residuals.
Consistent with this assessment, the VDbase–SL regressions using independent
contrasts calculated by resolving polytomies randomly 1,000 times had a range
of slopes very similar (0.381 to 0.393, R2 0.56 to 0.58) to analyses based on raw
data (0.435), highlighting that vessel diameter tracks stem length in similar
ways regardless of phylogenetic affinity (Fig. 2). All analyses were carried out
in R v.3.3.1 (www.r-project.org).
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